
The amortized cost of finding the minimum

Haim Kaplan ∗ Or Zamir † Uri Zwick ‡

Abstract

We obtain an essentially optimal tradeoff between the
amortized cost of the three basic priority queue opera-
tions insert, delete and find-min in the comparison
model. More specifically, we show that

A(find-min) = Ω

(
n

(2 + ε)A(insert)+A(delete)

)
,

A(find-min) = O
(n

2A(insert)+A(delete)
+ log n

)
,

for any fixed ε > 0, where n is the number of items
in the priority queue and A(insert), A(delete) and
A(find-min) are the amortized costs of the insert,
delete and find-min operations, respectively. In
particular, if A(insert) + A(delete) = O(1), then
A(find-min) = Ω(n), and A(find-min) = O(nα),
for some α < 1, only if A(insert) + A(delete) =
Ω(log n). (We can, of course, have A(insert) =
O(1), A(delete) = O(log n), or vice versa, and
A(find-min) = O(1).) Our lower bound holds even
if randomization is allowed. Surprisingly, such funda-
mental bounds on the amortized cost of the operations
were not known before. Brodal, Chaudhuri and Rad-
hakrishnan, obtained similar bounds for the worst-case
complexity of find-min.

1 Introduction

A priority queue (also known as a heap) is a basic
data structure that maintains a collection S of items,
each with an associated key (or priority) taken from a
totally ordered universe. The data structure supports
the following operations:

• insert(x): Insert item x into S.

∗Blavatnik School of Computer Science, Tel Aviv University,

Israel. Research supported by The Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11), the Israel

Science Foundation grant no. 822-10, and the German-Israeli

Foundation for Scientific Research and Development (GIF) grant
no. 1161/2011. E-mail: haimk@post.tau.ac.il.
†Blavatnik School of Computer Science, Tel Aviv University,

Israel. E-mail: orzamir@mail.tau.ac.il.
‡Blavatnik School of Computer Science, Tel Aviv University,

Israel. Research supported by BSF grant no. 2012338 and by The

Israeli Centers of Research Excellence (I-CORE) program (Center
No. 4/11). E-mail: zwick@tau.ac.il.

• delete(x): Delete item x from S.

• find-min: Return an item with minimal key in S.

We consider priority queue data structures that
work in the comparison model, i.e., data structures that
can only access keys via comparisons. When proving
lower bounds, the time (or cost) of an operation is
taken to be the number of comparisons performed while
executing it. When proving upper bounds, the time
includes all operations. Classical data structures, such
as binary heaps [22] and balanced search trees [1, 16]
perform all three operations in O(log n) worst-case time,
where n is the current number of items in the heap.
Any such data structure can be converted into a data
structure that performs insert and find-min in O(1)
worst-case time and delete in O(log n) worst-case time
(see Alstrup et al. [2]). Various priority queue data
structures achieve this directly [6, 7, 9, 17, 8]. Similarly,
it is possible to implement insert in O(log n) worst-
case time and delete and find-min in O(1) worst-case
time [13, 18].

As n items can be sorted using n insert, n
find-min and n delete operations, and as sorting re-
quires at least Ω(n log n) comparisons, we immediately
get that at least one of these three operations must have
a worst-case cost, and in fact also an amortized cost,
of Ω(log n). We saw above that if one of the update
operations insert or delete has a worst-case cost of
Θ(log n), then find-min and the other update opera-
tion can be implemented in O(1) time. A natural ques-
tion is then: Is it possible to implement insert and
delete in O(1) time and find-min in O(log n) time?
More generally, if insert and delete are allowed only
O(1) time, how fast can find-min operations be im-
plemented? Time here can refer to both worst-case
or amortized time. We can also consider determinis-
tic or randomized data structures. Perhaps the most
interesting variant is when all costs are amortized, as
in many situations we are more interested in the total
cost required to execute a sequence of operations, rather
than the cost of individual operations. Surprisingly, the
amortized versions of these fundamental questions were
not answered before.

Brodal et al. [5] address a mixed (randomized)
version of the problem. They show that if the amortized

(expected) cost of insert and delete operations is at
most t, then the worst-case (expected) cost of find-min
is Ω(n/22t). We build on the approach of Brodal et
al. [5] and resolve the more natural amortized version
of the problem. More specifically, we show that if
the amortized (expected) cost of insert and delete

operations is at most t, then the amortized (expected)
cost of find-min operations Ω(n/(t22t)). (We loose
a factor of t in the denominator.) Extending the
lower bound of Brodal et al. [5] to the amortized case
requires additional non-trivial ideas. We note that there
are some data structure problems for which there are
substantial gaps between the worst-case and amortized
costs of some operations. For example, in the union-
find problem, there is an Ω(log n/log log n) lower bound
on the worst-case complexity and an O(α(m,n)) upper
bound on the amortized complexity of the operations,
where α(m,n) is the inverse Ackermann function (see
Fredman and Saks [15] and Tarjan [20]).

We also show that our Ω(n/(t22t)) lower bound
on the amortized cost of find-min is almost tight by
describing a lazy version of binomial heaps [21] for which
the amortized cost of insert and delete are both t
while the amortized cost of find-min is O(n/22t+log n).
(We can also take the amortized cost of insert to
be 1, and that of delete to be 2t− 1, which is slightly
stronger as some items may be inserted but not deleted.)
An interesting feature of this data structure is that it
achieves these bounds simultaneously for all values of t.
This improves on a simple data structure of Brodal et al.
[5] in which the worst-case cost of find-min operations is
O(n/2t). (Note that this bound has 2t, rather than 22t,
in the denominator.)

To prove our lower bound on the amortized cost of
find-min, we show that for any (randomized) priority
queue data structure, and for any k that divides n, there
exists a sequence of the form:

n × insert , n/k × (find-min , k × delete)

on which the data structure performs Ω(n log n
k) com-

parisons. In the sequences used, each deleted item is
a minimal item. We call such sequences canonical se-
quences. The amortized lower bound then follows us-
ing a simple calculation. Brodal et al. [5] obtained
their worst-case bound on the cost of find-min using
sequences that contain a single find-min operation.

Following Brodal et al. [5], we actually give two
lower bounds on the amortized cost of find-min opera-
tions. The first one uses a generalization of the compar-
ison tree technique used to obtain the Ω(n log n) lower
bound for sorting that goes back to Ford and Johnson
[14]. The second lower bound uses an explicit adver-
sary that answers comparisons made by any priority

queue data structure. The explicit adversary we use
is an extension of the adversary of [5], which in turn
is an extension of an adversary devised by Borodin et
al. [4]. The lower bound obtained using the explicit ad-
versary is weaker than the lower bound obtained using
the comparison tree approach, and it can only be used
to obtain a lower bound for deterministic data struc-
tures. The advantage of the explicit adversary is that
it can be used to efficiently answer comparisons made
by the algorithm, in an on-line manner, in a way that
forces the data structure to perform many comparisons.
Furthermore, the explicit adversary does that without
examining the ‘internal structure’ of the data structure.

The rest of the paper is organized as follows.
In Section 2 we introduce some basic notions and
definitions. In Section 3 we obtain our lower bound on
the amortized (expected) cost of find-min operations.
In Section 4 we obtain an almost matching upper
bound. In Section 5 we obtain an alternative proof
of the amortized lower bound for the cost of find-min
operations using an explicit adversary. In Section 6 we
use our lower bounds to obtain a lower bound on the cost
of delete operations that delete a non-minimal item.
We end in Section 7 with some concluding remarks and
open problems.

2 Preliminaries

We begin with a formal definition of amortized costs.

Definition 2.1. (Amortized cost) A data structure
supports operation types OP1, . . . , OPk in amortized
costs f1(n), ..., fk(n), respectively, if and only if, it ex-
ecutes every sequence op1, . . . , opm of operations, start-
ing from an empty data structure, using a total cost of
at most

∑m
i=1 fyi(ni), where OPyi is the type of oper-

ation opi, and ni is the number of items in the data
structure at the time opi is executed, for 1 ≤ i ≤ m.

The cost of an operation can be measured in time,
i.e., number of basic computational steps needed to
perform the operation, or in comparisons, i.e., the
number of pairwise comparisons needed to perform the
operation. We can thus speak about amortized time or
amortized number of comparisons.

We usually assume that the amortized cost func-
tions f1(n), . . . , fk(n) are non-decreasing in n. If
the sequence op1, . . . , opm contains mj operations of
type OPj , for 1 ≤ j ≤ k, and the maximum number
of items in the data structure during the execution of
the sequence is at most n, then the total cost of per-
forming the operations is at most

∑k
j=1mjfj(n).

We consider priority queue data structures that
work in the comparison model. Our lower bounds are
on the number of comparisons made while implementing

the various operations. In our upper bounds, we take
into account all operations, not only comparisons.

To obtain lower bounds on the (amortized) cost of
various priority queue operations, we need to exhibit,
for every possible implementation, a sequence of oper-
ations that forces the data structure to perform many
comparisons. The sequences we use have the following
simple and natural form:

Definition 2.2. (Canonical sequences) Let a1, a2,
. . . , an be a sequence of items. Every permutation σ ∈
Sn defines a total order aσ(1) < aσ(2) < · · · < aσ(n) on
the items. For every σ ∈ Sn and 1 ≤ k < n, such that k
divides n, we define the following sequence SEQ(σ, k) of
priority queue operations:

insert(a1) , insert(a2) , . . . , insert(an) ,

find-min , delete(aσ(1)) , . . . , delete(aσ(k)),
find-min , delete(aσ(k+1)) , . . . , delete(aσ(2k)),

...
...

...
...

find-min , delete(aσ(n−k+1)) , . . . , delete(aσ(n)).

The first row above contains n insert operations. Each
subsequent row contains one find-min operation fol-
lowed by k delete operations. Note that in a canonical
sequence, an item about to be deleted is always the
smallest item currently in the priority queue. The pa-
rameter k is determined by the amortized costs assigned
to insert and delete operations. We assumed, for sim-
plicity, that k divides n. If not, the last row should be

find-min, delete(aσ(k(dnk e−1)+1)) , . . . , delete(aσ(n)).

A canonical sequence contains n insert operations, n
delete operations, and dn/ke find-min operations.

To obtain a lower bound for randomized data struc-
tures, we use the celebrated Yao’s min-max principle
(Yao [23]) saying that to obtain a lower bound on the
expected number of operations performed by a random-
ized algorithm, it is enough to describe a distribution
of input instances that forces every deterministic algo-
rithm to perform a large expected number of operations.
The distribution we use is particularly simple; we use
each one of the n! canonical sequences SEQ(σ, k) with
probability 1/n!.

The operation of any comparison-based priority
queue data structure on canonical sequences of oper-
ations, for a fixed value of the parameter k, can be
described by a comparison-deletion tree that extends
the notion of comparison trees used to obtain a lower
bound on the number of comparisons performed by a
comparison-based sorting algorithm. A similar notion
is used in Brodal et al. [5].

Definition 2.3. (Comparison-deletion trees) A
comparison-deletion tree is a rooted tree composed of
comparison nodes, deletion nodes and leaves. Each
comparison node is labeled by two integers i : j,
signifying a comparison of items ai and aj, and has
two children corresponding to the two possible outcomes
ai < aj and ai > aj. (We assume, for simplicity, that
all keys are distinct.) For each node v of the tree, we
let ≺v be the partial order on the items corresponding
to the outcomes of all comparisons on the path from
the root to v. We let min(v) denote the indices of the
items that are minimal with respect to ≺v. (An item ai
is minimal with respect to ≺v if there is no other
item aj for which aj ≺v ai.) Each deletion node v has
a child vj for every j ∈ min(v). The edge from v to vj
is labeled j and signifies the deletion of item aj.

A portion of a comparison-deletion tree, describing
the behavior of a particular data structure on canonical
sequences with n = 4 and k = 2, is given in Figure 1.

A comparison-deletion tree does not contain explicit
insert and find-min nodes, as they are not needed
for canonical sequences of operations. Insert nodes
are not needed as all insertions take place at the
beginning of the sequence. As we are interested in
amortized bounds, we may assume that no comparisons
are performed before all items are inserted. We may,
in fact, assume that all comparisons are performed in
response to find-min operations. Explicit find-min
nodes are not needed as in canonical sequences we know
that find-min operations are performed immediately
before the first delete operation, before the (k + 1)-
st delete operation, etc.

Lemma 2.1. A comparison-deletion tree describes a
comparison-based implementation of a priority-queue
data structure that correctly manipulates all canonical
sequences SEQ(σ, k), where σ ∈ Sn and k divides n, if
and only if every root to leaf path contains exactly n
deletion nodes, arranged in n/k groups of k consecu-
tive deletion nodes, and the number of children of the
(ik + 1)-st deletion node on the path, for 0 ≤ i < n/k,
is exactly 1. Such a comparison-deletion tree contains
exactly n! leaves, each corresponding to a unique per-
mutation σ ∈ Sn that determines a total order of the
items.

Proof. The (ik+1)-st deletion node on each root to leaf
path corresponds exactly to the position of a find-min
operation. The data structure can correctly report the
minimal item, with no further comparisons, if and only
if the partial order corresponding to this deletion node
contains exactly one minimal item. As the item deleted
in a canonical sequence is always the minimal item

1:2

1:3

1:4 3:4

1<2 2<1

1<3 3<1

1<4 4<1 3<4 4<3

1 4 3 4

3:4 2:4 2:3 2:3 2:4

2 3 4

3<4 4<3 2<4 4<2

3

4

4

3

2

4

4

2

2

3

3

2

1

2<3 3<2

2

3

3

2

1 4

2<4 4<2

2

4

4

2

1

2

3

1

2

2<3 3<2

Figure 1: A portion of a comparison-deletion tree corresponding to the case n = 4 and k = 2. Circles are
comparison nodes, squares are deletion nodes while triangles are leaves. The numbers adjacent to edges connecting
deletion nodes with their children indicate the index of the item deleted.

contained in the priority queue, the order in which the
items are deleted on a given root to leaf path uniquely
determines a permutation σ ∈ Sn. 2

In the next section, we show that each comparison-
deletion tree that corresponds to a valid priority queue
data structure, contains at least one root to leaf path
that contains Ω(n log n

k) comparison nodes. (The same
lower bound holds, in fact, for the average number of
comparison nodes on all root to leaves paths.) Such
a root to leaf path corresponds to a way of answering
comparisons made by the data structure in a way that
forces it to perform many comparisons. This existence
proof, however, is non-constructive; to identify such
a path we essentially need to construct the whole
comparison-deletion tree of the data structure, which
is exponential in size.

In Section 5 we obtain an alternative proof of a
slightly weaker version of the lower bound using an

explicit adversary which supplies an efficient way of
answering comparisons made the data structure, forcing
it to perform many comparisons.

3 Lower bound on amortized cost of find-min

We are now ready for the main theorem of this paper.

Theorem 3.1. (Amortized cost of find-min) For
any, possibly randomized, comparison-based priority
queue data structure, if A(insert) + A(delete) ≤ 2t,
where t ≥ 4, then A(find-min) = Ω(n

t 22t).

Here A(insert), A(delete) and A(find-min) are
the amortized (expected) costs of the insert, delete
and find-min operations, respectively. In the statement
of the theorem, t = t(n) is any non-decreasing function
of n.

The proof of Theorem 3.1 uses the notion of
comparison-deletion trees defined in the previous sec-

tion. If T is a tree and v a node of T , we let deg(v) be
the number of children of v. We let Leaves(T) be the
set of leaves of T . If ` ∈ Leaves(T), we let path(`) be
the set of nodes on the path from the root of T to `,
not including `. The following simple lemma is used by
McDiarmid [19] and Brodal et al. [5]. For completeness
we include a proof.

Lemma 3.1. For a rooted tree T with m leaves,∏
`∈Leaves(T)

∏
v∈path(`)

deg(v)
1
m ≥ m .

Proof. Let

W` =
∏

v∈path(`)

deg(v) .

As 1
W`

is the probability that a random walk that starts
at the root and at each node chooses a child uniformly
at random, reaches leaf `, we have∑

`∈Leaves(T)

1

W`
= 1 .

Since the geometric mean is not larger than the arith-
metic mean, we obtain that

∏
`∈Leaves(T)

(
1

W`

) 1
m

≤ 1

m

∑
`∈Leaves(T)

1

W`
=

1

m
.

The lemma follows by taking reciprocals. 2

We are now ready to prove Theorem 3.1.

Proof. (of Theorem 3.1) Let D be a deterministic pri-
ority queue data structure. For any k < n, we begin by
showing that the expected number of comparisons per-
formed byD on a random canonical sequence SEQ(σ, k),
where σ is chosen uniformly at random from Sn, is at
least n(lg n

k − lg lg n
k − lg e)− 1. 1

Let T = TD be the comparison-deletion tree corre-
sponding to D. By Lemma 2.1 we know that T has n!
leaves and that for every leaf `, the path from the root
of T to ` contains exactly n deletion nodes. More specif-
ically, the path from the root of T to a leaf ` is composed
of some comparison nodes, then k deletion nodes, then
some more comparison nodes, followed again by k dele-
tion nodes, and so on. (If k does not divide n, then the
last group of deletion nodes contains less than k nodes.)
Each consecutive sequence of comparison nodes is natu-
rally associated with one of the find-min operations of
the sequence.

1We use lgn = log2 n to denote base 2 logarithms.

For every leaf ` of T = TD, we let ci(`) be
the number of comparisons associated with the i-th
find-min operation. We let di,j(`) be the degree of
the j-th deletion node following the i-th find-min
operation. (In other words, ci(`) is the number of
comparison nodes immediately preceding the ((i−1)k+
1)-st deletion node, and di,j(`) is the degree of the
((i− 1)k + j)-th deletion node on the path to `.)

For every leaf `, let c(`) =
∑n/k
i=1 ci(`) be the total

number of comparisons performed on the path to `.
Note that L = 1

n!

∑
` c(`) is precisely the expected

number of comparisons performed by D on a uniformly
random canonical sequence SEQ(σ, k).

By Lemma 2.1, we know that di,1(`) = 1, for every
1 ≤ i ≤ n/k. (This, as we saw, is equivalent to
saying that the data structure has enough information
to answer the i-th find-min operation.) The degree
of a deletion node is the number of minimal items in
the partial order corresponding to it. When a minimal
item is deleted, the number of minimal items is reduced
by at most 1. Thus di,j(`) ≥ di,j−1(`) − 1, for every
1 ≤ i ≤ n/k and 1 ≤ j ≤ k.

To answer the first find-min operation D must
perform at least n−1 comparisons. Thus c1(`) ≥ n−1,
for every leaf `. Also, after the first ik items are deleted,
the number of minimal items in the partial order is at
least di,k(`)− 1, so the number of comparisons required
to answer the (i+ 1)-st find-min is at least di,k(`)− 2.
Thus ci+1(`) ≥ di,k(`)−2. Combining these inequalities,
we get, for j ≥ 2,

di,j(`) ≤ di,k(`) + (k − j)
≤ ci+1(`) + 2 + (k − j) ≤ ci+1(`) + k .

For every leaf ` ∈ Leaves(T), let

W` =
∏

v∈path(`)

deg(v)

=

n/k∏
i=1

2 ci(`)

 ·
n/k∏
i=1

k∏
j=1

di,j(`)


≤ 2 c(`) ·

n/k∏
i=1

(ci+1(`) + k)
k−1

,

where we let cn
k +1(`) = 0. By Lemma 3.1 we have

n! ≤

(∏
`

W`

) 1
n!

≤

∏
`

2c(`) ·
n/k∏
i=1

(ci+1 (`) + k)
k−1

 1
n!

,

or after taking logarithms

lg n! ≤ 1

n!

∑
`

c(`) +
k−1

n!

∑
`

n/k∑
i=1

lg(ci+1(`) + k)

≤ 1

n!

∑
`

c(`) +
k−1

n!
· n! ·n

k
lg

∑
`

∑n/k
i=1 ci+1(`) + k

n! ·nk
,

where the second inequality follows from the inequality∑m
i=1 lg xi ≤ m lg

∑m
i=1 xi

m . Recalling that c1(`) ≥ n− 1
and cn

k +1(`) = 0, we get

n/k∑
i=1

(ci+1(`) + k) ≤ (

n/k∑
i=1

ci(`))− (n− 1) + n = c(`) + 1 .

Thus,

n lg
n

e
< lg n!

<
1

n!

∑
`

c(`) + n lg

(
k

n
· 1

n!

∑
`

(c(`) + 1)

)

< (L+ 1) + n lg

(
k

n
(L+ 1)

)
,

where, as above, L = 1
n!

∑
` c(`) is the expected cost of

random canonical sequence. Dividing both sides by n
and moving things around, we get

lg
n

k
− lg e <

L+ 1

n
+ lg

L+ 1

n
.

It is easy to check that x + lg x ≥ y − c, where c > 0,
implies x > y − lg y − c. Thus,

L+ 1

n
> lg

n

k
− lg lg

n

k
− lg e ,

and finally

L > n

(
lg
n

k
− lg lg

n

k
− lg e

)
− 1 .

Now, if A(insert) +A(delete) = 2t, then

A(find-min) ≥ L− 2t · n
n/k

> k

(
lg
n

k
− lg lg

n

k
− lg e− 2t

)
− 1 .

Letting k = n/2s, where s = 2t + lg(2t) + lg e + 2, and
assuming t ≥ 4, we get

A(find-min) >
n

2s
(s− lg s− lg e− 2t)− 1

≥ n

2s
(lg(2t) + 2− lg s)− 1 ≥ n

2s
− 1 =

1

8e

n

t 22t
− 1 .

2

4 Upper Bound

In this section we present a simple deterministic data
structure, a lazy version of binomial heaps [21], for
which we can prove the following theorem, showing that
the lower bound of the preceding version is almost tight.

Theorem 4.1. A Lazy binomial heap performs insert
using 1 amortized comparison and O(1) time, delete

using 2t− 1 amortized comparisons and O(t) time, and
find-min using O(n

22t + log n) amortized comparisons
and time. (Here, t = t(n) ≥ 1 is any non-decreasing
positive function.)

We note that the + log n term in the amortized cost
of find-min in Theorem 4.1 is significant only when
A(insert) + A(delete) = 2t ≥ lg n− lg lg n. Using an
adaptation of priority queues of Elmasry et al. [12] and
Edelkamp et al. [10, 11] it is possible to obtain a data
structure that supports insert using O(1) amortized
comparisons, find-min requires no comparisons, and
delete requires lg n + O(1) amortized comparisons.
Thus, for A(insert) + A(delete) = 2t = lg n + Ω(1),
the + log n term in Theorem 4.1 can be avoided by using
a different data structure. The necessity of the + log n
term in the small range lg n− lg lg n ≤ 2t ≤ lg n+O(1)
remains unclear.

4.1 Binomial heaps We begin with a quick review
of Binomial heaps. A binomial tree of rank k, de-
noted Bk, is defined recursively as follows: B0 is com-
posed of a single node; Bk is obtained by linking two
disjoint copies of Bk−1, i.e., making the root with the
smaller key the parent of the other. (Some Bk’s can be
seen in Figure 2, see below.) The rank of a node is a
binomial tree is defined to be the number of children it
has. The rank of a tree is the rank of its root. Thus,
the rank of Bk is k. A binomial heap is composed of a
collection of binomial trees, at most one of each rank.
Each node, in each tree, contains an item. Each tree is
heap-ordered : the key of an item contained in a node is
not larger than the keys of the items contained in the
children, if any, of that node. This means, in particular,
that the item of minimum key must reside in one of the
roots.

To insert an item into a binomial heap, create a
new B0 and place the item in it. If the heap does not
contain a B0, we are done. If the heap already contains
a B0, the two trees are linked, making the one whose
root contains an item with a smaller key the parent of
the other. This creates a new B1. If the heap does not
contain a B1 we are done. Otherwise, the two B1’s are
linked to form a B2, and so on. (The process is similar
to process of incrementing a binary counter.)

To find the item with minimum key, compare the
keys of the items in the roots. Optionally, maintain a
pointer to the root holding the smallest item.

Standard binomial heaps do not support the dele-
tion of arbitrary items, only of items that reside in roots,
e.g., an item of minimum key. Suppose that an item to
be deleted resides in the root of a Bk. It is not difficult
to check that removing the root of a Bk creates a dis-
joint collection of B0, B1, . . . , Bk−1. The trees in this
collection are added to the collection of trees forming
the heap. As long as the collection contains two trees
of the same rank, a link operation is performed. (The
process is similar to the process of adding two binary
numbers.)

The above process can also be used to support a
meld operation that we do not consider here.

It is not difficult to check that a binomial heap con-
taining n items is composed of at most lg n trees (more
precisely, the number of 1’s in the binary representation
of n), and that each of the operations described above
requires at most lg n comparisons and O(log n) time.

In the next section we present a straightforward lazy
version of binomial heaps. To analyze this lazy version
we need bounds on the number of nodes of each different
rank contained in a binomial trees and heaps.

Lemma 4.1. A binomial heap holding n items contains
at most bn/2ic nodes of rank i, for i = 0, 1, . . . , blg nc.

Proof. Each node of rank i is the root of a subtree of
size 2i. Trees rooted at distinct nodes of rank i are
distinct.

4.2 Lazy binomial heaps A lazy binomial heap is
composed of a binomial heap H and a list of items L.
Each node in H may be marked as deleted. Apart from
that, H has the structure of a binary heap, i.e., each
tree in H is a binomial tree, no two trees in H have the
same rank, and each tree is heap-ordered. We let n be
the number of items in the heap, n0 be the number of
items in L and n1 be the number of (unmarked) items
in H. Thus n = n0 +n1. We let N ≥ n1 be the number
of nodes in H, including those marked for deletion.

To insert an item into a lazy binomial heap, add
the item to L. To delete an item, check whether the
item is held in L or inH. If it is held in L, remove it from
the list. If it held in H, mark the node containing the
item for deletion. Note that insert and delete operations
do not perform any comparisons.

A find-min operation is implemented as follows.
If N ≥ 2n, rebuild a binomial heap containing the n
items and find the item with minimum key. If N < 2n,
recursively remove each root of H marked for deletion.
(When a root is deleted, its children become new roots,

some of which may be marked or deletion.) When none
of the resulting roots is marked for deletion, perform
linking operations on all the remaining trees and all
items in L, which are now also viewed as trees of rank 0,
until there is at most one tree of each rank. Then,
compare the keys in the remaining roots and return the
item with minimal key. After a find-min operation the
list L is empty.

A lazy binomial heap, with n = 26, n0 = 8 and
n1 = 18, is shown in Figure 2.

4.3 Amortized analysis of lazy binomial heaps
The amortized analysis of lazy binomial heaps uses a
standard potential function argument. We give each
item in L and each root in H one unit of potential. We
give each item in H marked for deletion additional 2t−1
units of potential. The potential of the data structure
is the sum of the potentials of all items. As insert and
delete perform no comparisons, the amortized number
of comparisons performed by insert and delete, which
is the actual number of comparisons performed by each
operation plus the change in the potential, is indeed 1
and 2t− 1, respectively.

We next analyze the amortized cost of find-min.
If N ≥ 2n, the heap is rebuilt. Before the rebuilding,
the heap contained at least N − n ≥ n items marks for
deletion, having a total potential of at least (2t− 1)n ≥
n, as t ≥ 1. We thus have enough potential to view
each item as the root of a tree of size 1 and give it one
unit of potential. We now start to link trees having the
same rank. The amortized cost of each link is 0, as a
link performs one comparison but reduces the potential
by 1. Thus, the amortized cost of the rebuilding process
is at most 0. After rebuilding, heap contains at most lg n
trees and hence an item of minimum key can be found
using at most lg n comparisons. The amortized cost of
the find-min operation, in this case, is at most lg n.

We next consider the case N < 2n. The amortized
cost of deleting a root of rank k, marked for deletion, is
k−2t. (Each one of the k new roots receives one unit of
potential, while the 1 + (2t− 1) = 2t units of potential
held by the old root, 1 for being a root and 2t − 1 for
being marked for deletion, are removed.)

Let nk be the number of roots of rank k which are
deleted by the process. As H has the same structure
as a binomial heap containing N items, we get by
Lemma 4.1, for k ≤ lnN , that

nk ≤
⌊
N

2k

⌋
≤ 2n

2k
≤ n

2k−1
.

The total increase in potential as a result of deleting

B0 B1 B3 B4

Figure 2: A lazy binomial heap. The items on top row belong to the list L. All other items belong the the
binomial heap H. Empty nodes denote items marked for deletion.

marked roots is therefore at most∑
k≥2t

(k − 2t)nk ≤
∑
k≥2t

(k − 2t)
n

2k−1

=
∑
i≥0

i
n

22t+i−1
=

n

22t

∑
i≥0

i

2i−1
=

4n

22t
.

Finally, at most lg n comparisons are now performed
to find the root containing the item of minimal key.
These comparisons do not change the potential. This
completes the proof of Theorem 4.1.

5 Lower Bound using an explicit adversary

We next describe an efficient explicit adversary us-
ing which we can obtain an Ω(n

4A(insert)+A(delete)) lower
bound on A(find-min), the amortized number of com-
parisons required to perform a find-min operation by
any deterministic comparison based priority queue data
structure. The adversary used is a modification of
an adversary used by Brodal et al. [5] to obtain an
Ω(n

4A(insert)+A(delete)) worst case lower bound on the num-
ber of comparisons required to perform a find-any op-
eration, and in particular a find-min operation. (A
find-any operation is required to return an item x con-
tained in the data strucure along with its rank, i.e., the
number of items in the data structure not larger than x.)

An adversary has two tasks: (i) it chooses the
sequence of operations that the data structure should
perform; (ii) it answers the comparison queries made
by the data structure.

5.1 The Adversary The adversary places the items
inserted into the priority queue in nodes of a potentially
infinite complete binary tree T . A node of T may
contain several items. A node of T is occupied if it
contains at least one item, and empty, otherwise. As
the number of items is finite, only a finite portion of T
is used. We let T̄ be the subtree of T composed of all the
ancestors of occupied nodes of T . We frequently order
the nodes of T̄ according to the in-order traversal of T̄ .
(The in-order of a binary tree T , composed of a root r,
a left subtree TL and a right subtree TR, is defined
recursively as the in-order of the nodes of TL, followed
by r, followed by the in-order of the nodes of TR.)

We let v(x) denote the vertex T containing item x.
For a node u ∈ T we let left(u) and right(u) denote the
left and right children of u, respectively, and we let T (u)
denote the set of descendants of u in T , including u
itself.

When an item is inserted into the priority queue, the
adversary puts it at the root of the tree. The adversary
maintains a partial order < on the items currently in
the priority queue. All answers already given by the
adversary are consistent with this partial order. The
partial order is defined in the following way:

Definition 5.1. (Partial order) Let x, y be items
residing in nodes v(x), v(y) of T̄ . We say that x < y
if and only v(x) is not an ancestor of v(y), v(y) is not
an ancestor of v(x), and v(x) appears before v(y) in the
in-order traversal of T̄ .

Note that x and y are comparable in < if and only
if none of v(x) and v(y) is an ancestor of the other. If

v(x) is an ancestor of v(y), or vice versa, then x and y
are incomparable in <. In particular, if v(x) = v(y),
i.e., x and y reside in the same node, then x and y
are incomparable. It is not difficult to check that < is
indeed a partial order, i.e., if x < y and y < z then
x < z.

The adversary responds to a comparison between x
and y as follows:

• If x < y or y < x in the partial order, the adversary
gives the corresponding response.

• If v(x) = v(y), the adversary moves x to left(v(x)),
moves y to right(v(x)), and answers that x < y.

• If v(x) is an ancestor of v(y), the adversary moves x
to the child u of v(x) which is not an ancestor
of v(y) and answers x < y if u = left(v(x)), and
y < x if u = right(v(x)).

• If v(y) is an ancestor of v(x), the adversary moves y
to the child u of v(y) which is not an ancestor
of v(x) and answers x < y if u = right(v(x)), and
y < x if u = left(v(x)).

An example showing the behavior of the adversary
is given in Figure 3. (The second and third comparisons
there, i.e., a : d and b : c, are somewhat inefficient. They
could be replaced by the single comparison c : d.)

As we are interested in amortized complexity, we
may assume that the data structure performs compar-
isons only as a response to find-min operations. The
data structure finishes the processing of a find-min op-
eration only when the partial order < contains a unique
minimal element x. The node v(x) containing x must
then be the first occupied node in the in-order traversal
of T̄ . Item x must be the only item in v(x). Further-
more, all proper ancestors of v(x) in T must be empty.

The adversary tries to force the data structure
to perform many comparisons by using the following
sequences of operations.

Definition 5.2. ((n, k)-sequences) For parameters
n ≥ 1 and k ≥ 1, the adversary, interacting with a
given data structure, issues the following sequence of
operations, which we refer to as an (n, k)-sequence.

• Perform n insert operations.

• Repeat dn/ke times: Perform a find-min operation
followed by k delete operations. Each delete

operation deletes an item from the first occupied
node in the in-order traversal of T̄ . (If k does not
divide n, then the number of items deleted after the
last find-min operation is less than k.)

Note the resemblance of an (n, k)-sequence to the canon-
ical sequences introduced in Section 2. The difference
is that the adversary used here is adaptive, the iden-
tity of the deleted items in an (n, k)-sequence depends
on the comparisons made by the data structure. This
is why the lower bound of this section is valid only for
deterministic data structures. On the other hand, the
adversary of this section uses the same strategy to force
any deterministic data structure to perform many com-
parisons, without having to know in advance how the
data structure works.

5.2 A pebbling game To facilitate the proof of
the lower bound, we introduce a simple (n, k)-pebbling
game. The game is played by the data structure. The
behavior of the adversary is coded in the rules of the
game. The game starts by placing n pebbles at the root
of the potentially infinite complete binary tree T . (We
use the same notation and terminology as above.)

The goal of the player is to eliminate all the pebbles
from the tree. When the first occupied node u in T ,
according to in-order, contains a single pebble, and
all proper ancestors of u are empty, k pebbles are
sequentially removed, each from the first occupied node
in the tree. We refer to the condition above as the
elimination condition. (The identity of the first pebble
removed is uniquely determined. The next pebbles may
be removed from nodes that contain more than one
pebble. The identity of the pebble removed in such a
case is not important.)

When the elimination condition is not satisfied, the
player is allowed to perform one of the following moves:

• Take two pebbles p and q that reside in the same
vertex v of T , move p to left(v) and q to right(v).

• Take a pebble p placed at vertex v of T such that
one of the vertices in T (left(v)) contains a pebble q,
and move p to right(v).

• Take a pebble p placed at vertex v of T such
that one of the vertices in T (right(v)) contains a
pebble q, and move p to left(v).

The goal of the player is to eliminate all pebbles
using minimum number of moves. The following lemma
establishes the connection between the problem of de-
signing a data structure that performs a minimal num-
ber of comparisons and solving the pebbling game using
a minimal number of moves.

Lemma 5.1. The minimum number of comparisons re-
quired by a deterministic algorithm to perform an (n, k)-
sequence of priority queue operations issued by the ad-
versary is equal to the number of moves needed to re-
move all pebbles in an (n, k)-pebbling game.

a b
c d c d

b a b d a c b d

c a

c

b d a

Figure 3: Various states of the tree kept by the adversary. The tree on the left is the tree after the insertion of
items a, b, c and d. The following trees are the results of the comparisons a : b, a : d, b : c and a : c. The partial
order defined by the rightmost has a unique minimal item. If k = 3, then the 3 items removed are a, c and b or d.

Proof. A state of the adversary, i.e., the placement of
the items in the binary tree T , corresponds immediately
to a state in the pebbling game. The elimination
condition of the pebbling game corresponds exactly to
a situation in which the partial order < maintained by
the adversary contains a unique minimal item. It is easy
to check that the movement of the items in the tree as
a result of a comparison corresponds exactly to a move
in pebbling game. 2

Lemma 5.2. An (n, k)-pebbling game can be solved us-
ing a minimal number of moves by first moving all peb-
bles from the root to the left and right children of the
root, then performing moves involving only pebbles in
the left subtree, and finally performing moves that only
involve pebbles in the right subtree.

Proof. If the root is occupied and n > 1, then the
elimination condition does not hold. Thus, all pebbles
must eventually leave the root. All moves that do not
involve pebbles residing in the root may be delayed until
all pebbles leave the root. Similarly, as long as the left
subtree is not empty and the elimination condition is not
satisfied, moves involving tokens from the right subtree
may be delayed. It is not difficult to check that each
delayed move may be performed later, and that each
move that was moved forward is still a valid move. 2

5.3 Lower bound Let Tk(n) be the minimal number
of moves required to solve the (n, k)-pebbling game.

Lemma 5.3. (Recurrence for Tk(n)) For any n, k ≥ 1

Tk(n) ≥
⌈n

2

⌉
+ min

1≤`<n
{ Tk(`) + Tk(n− `− k) } .

Proof. By Lemma 5.2 we may assume that all pebbles
are moved out of the root before any other moves are

performed and that moves involving pebbles in the right
subtree are performed only after the left subtree is
cleared. This decomposes the problem into two almost
disjoint subproblems.

Removing all pebbles from the root requires at least
dn/2e moves, as each move removes at most two pebbles
from the root. Let ` be the number of pebbles moved to
the left child of the root by an optimal move sequence.
Removing all the pebbles from left subtree is exactly an
(`, k)-pebbling game which, by definition, requires Tk(`)
moves. If ` is not divisible by k, then the last elimination
round of the (`, k)-pebbling game allows us to remove
some pebbles from the right subtree ‘for free’. However,
the number of pebbles thus removed is at most k. Thus,
we are left with an (r, k)-pebbling game to be played on
the right subtree, where r ≥ n− `− k. It is easy to see
that Tk(r) ≥ Tk(n− `− k). 2

Lemma 5.4. (Lower bound for Tk(n)) For all n, k ≥ 1,

Tk(n) ≥ n+ k

2
lg
n+ k

4k
+
k

2
.

Proof. By induction on n. For n ≤ k we have

n+ k

2
lg
n+ k

4k
+
k

2
≤ 0 ≤ Tk(n) .

Assume that the claim holds all n′ < n we prove it for
n. By Lemma 5.3, the induction hypothesis and the
convexity of the function x lg x

4k , we have

Tk(n) ≥ n

2
+ min

1≤`<n
{ Tk(`) + Tk(n− `− k) }

≥ n

2
+ min

1≤`<n

{
k+`

2
lg
k+`

4k
+
k

2
+
n−`

2
lg
n−`
4k

+
k

2

}
≥ n

2
+ k +

n+ k

2
lg
n+ k

8k
=

n+ k

2
lg
n+ k

4k
+
k

2
.

2

In particular, we get that T1(n) ≥ n+1
2 lg n+1

4 . As
an (n, 1)-pebbling game is equivalent to sorting, we get
as a corollary, that the explicit adversary of this section
forces any deterministic sorting algorithm to perform
at least n+1

2 lg n+1
4 comparisons. (A similar result is

contained in Brodal et al. [5].)

Theorem 5.1. For any deterministic priority queue
and every k ≤ n we have:

A(find-min) ≥ k

2
lg

n

4k
−k (A (insert) +A (delete)) .

Proof. By Lemma 5.1, any algorithm must make at
least Tk(n) comparisons when executing the sequence
of operations defined above, consisting of n insert, n
delete and dnk e find-min operations. Using Lemma 5.4
we get that

A (find-min) ≥ Tk (n)− n(A (insert) +A (delete))

dnk e

≥ k

n+k

(
n+k

2
lg
n+k

4k
− n(A (insert)−A (delete)

)
≥ k

2
lg

n

4k
− k(A(insert) +A(delete)) .

2

Theorem 5.2. For any deterministic priority queue,

A (find-min) ≥ 1

20
· n

4A(insert)+A(delete)

Proof. Let A(insert)+A(delete) = 2t. By Lemma 5.1
we have

A(find-min) ≥ k

2
lg

n

4k
− 2kt

This expression is maximized when k = n
4e42t and the

obtained lower bound is

A(find-min) ≥ lg e

8e

n

42t
>

1

20

n

42t
.

2

6 Deleting a non-minimum item

As we already mentioned, in any implementation of a
priority queue either delete-min or insert must per-
form Ω(log n) comparisons. What about the complexity
of a delete operation that deletes an item which is not
of minimum key in the priority queue?

Let delete-non-min(x) denote the operation of
deleting item x from the priority queue, given that x is
not an item with minimum key in the priority queue. Is
it possible to design a priority queue in which find-min,

insert and delete-non-min take o(log n) amortized
time, while delete-min takes O(log n) amortized time?

Relying on the lower bound of Section 3 (or Sec-
tion 5) we give a simple reduction that shows that this
is not possible.

Given a data structure B that supports insert,
delete-non-min, delete-min and find-min operations,
we can construct a data structure B′ that supports
insert, delete and find-min operations as follows:
B′ keeps the items in the structure B. In addition, it
inserts into B an item whose key is smaller than all other
keys. We denote this item by −∞. Operations on B′
are performed as follows:

• insert(x): Insert x into B.

• delete(x): Delete x from B using delete-non-min,
as x is not the minimum item in B.

• find-min: Delete −∞ from B using delete-min,
perform find-min on B and return the result.
Finally re-insert −∞ to B using insert.

We clearly have:

A(insertB′) = A(insertB)
A(deleteB′) = A(delete-non-minB)

A(find-minB′) =
A(delete-minB) +A(find-minB) +A(insertB)

As an immediate corollary of Theorem 3.1, we get:

Corollary 6.1. For any priority queue data struc-
ture, if A(insert) = A(delete-non-min) = t, then
A(find-min)+A(delete-min)+A(insert) = Ω(n

t22t).

In particular, if A(insert) = o(log n) and
A(delete-non-min) = o(log n), then A(find-min) +
A(delete-min) +A(insert) = Ω(n1−ε), for any ε > 0.

For completeness, we note that there is also an
easy reduction in the opposite direction. Given a
data structure B supporting find-min, insert, and
delete we can construct a data structure B′ supporting
find-min, insert, delete-non-min, and delete-min.
The structure B′ keeps the items in the structure B and
it also maintains a pointer called min to the minimum
item in B.

• find-min: Return the item stored in min.

• insert(x): Insert x into B and if x < min update
min to point to x.

• delete-non-min(x): Delete x from B (as x is not
the minimum, min remains correct).

• delete-min: Delete the item saved in min. Per-
form find-min on B and update min to point to
the resulting item.

Using Theorem 4.1 we thus get a data structure that
supports find-min with no comparisons, insert using
an amortized number of 2 comparisons, delete-non-min
in an amortized number of 2t − 1 comparisons, and
delete-min using an amortized number of O(n

22t +log n)
comparisons.

7 Concluding remarks and open problems

We obtained almost matching lower and upper bounds,
Ω(n/(t22t)) and O(n/22t + log n), respectively, on the
(expected) amortized number of comparisons performed
by find-min operations, if the amortized number of
comparisons performed by insert and delete are
both t. Closing the small gap between these two bounds
is an interesting open problem.

We also presented an explicit adversary using which
a weaker lower bound of Ω(n/(42t)) on the amortized
cost of find-min may be obtained. Is there an explicit
adversary using which an Ω(n/(42t)) lower bound on
the amortized cost of find-min may be obtained? This
seems related to perhaps an even more basic open prob-
lem: Is there explicit adversary that forces any deter-
ministic sorting algorithm to perform (1 − o(1))n lg n
comparisons? Efficient explicit adversaries that force
every comparison based sorting algorithm to perform
(1
2 − o(1))n lg n comparisons were obtained by Atallah

and Kosaraju [3] and by Brodal et al. [5].

Acknowledgement

We would like to thank Bob Tarjan for helpful discus-
sions and Mikkel Thorup for bringing the Brodal et
al. [5] paper to our attention.

References

[1] G.M. Adel’son-Vel’skĭı and E.M. Landis. An algorithm
for organization of information. Dokl. Akad. Nauk
SSSR, 146:263–266, 1962.

[2] S. Alstrup, T. Husfeldt, T. Rauhe, and M. Thorup.
Black box for constant-time insertion in priority queues
(note). ACM Transactions on Algorithms, 1(1):102–
106, 2005.

[3] M.J. Atallah and S.R. Kosaraju. An adversary-based
lower bound for sorting. Information Processing Let-
ters, 13(2):55–57, 1981.

[4] A. Borodin, L.J. Guibas, N.A. Lynch, and A.C.C. Yao.
Efficient searching using partial ordering. Information
Processing Letters, 12(2):71–75, 1981.

[5] G.B. Brodal, S. Chaudhuri, and J. Radhakrishnan.
The randomized complexity of maintaining the mini-
mum. Nord. J. Comput., 3(4):337–351, 1996.

[6] G.S. Brodal. Fast meldable priority queues. In Proc.
of 4th WADS, pages 282–290, 1995.

[7] G.S. Brodal. Worst-case efficient priority queues.
In Proceedings of the 7th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 52–58, 1996.

[8] G.S. Brodal, G. Lagogiannis, and R.E. Tarjan. Strict
Fibonacci heaps. In Proceedings of the 44th ACM
Symposium on Theory of Computing (STOC), pages
1177–1184, 2012.

[9] J.R. Driscoll, H.N. Gabow, R. Shrairman, and R.E.
Tarjan. Relaxed heaps: an alternative to Fibonacci
heaps with applications to parallel computation. Com-
munications of the ACM, 31(11):1343–1354, 1988.

[10] S. Edelkamp, A. Elmasry, and J. Katajainen. Weak
heaps engineered. J. Discrete Algorithms, 23:83–97,
2013.

[11] S. Edelkamp, J. Katajainen, and A. Elmasry. Strength-
ened lazy heaps: Surpassing the lower bounds for bi-
nary heaps. CoRR, abs/1407.3377, 2014.

[12] A. Elmasry, C. Jensen, and J. Katajainen. Multipartite
priority queues. ACM Transactions on Algorithms,
5(1), 2008.

[13] R. Fleischer. A simple balanced search tree with O(1)
worst-case update time. Int. J. Found. Comput. Sci.,
7(2):137–150, 1996.

[14] L.R. Ford and S.M. Johnson. A tournament problem.
The American Mathematical Monthly, 66(5):387 – 389,
1959.

[15] M. Fredman and M. Saks. The cell probe complexity
of dynamic data structures. In Proc. of 21st STOC,
pages 345–354, 1989.

[16] L.J. Guibas and R. Sedgewick. A dichromatic frame-
work for balanced trees. pages 8–21, 1978.

[17] H. Kaplan, N. Shafrir, and R.E. Tarjan. Meld-
able heaps and boolean union-find. In Proceedings of
the 34th ACM Symposium on Theory of Computing
(STOC), pages 573–582, 2002.

[18] C. Levcopoulos and M.H. Overmars. A balanced search
tree with O(1) worst-case update time. Acta Inf.,
26(3):269–277, 1988.

[19] Colin McDiarmid. Average-case lower bounds for
searching. SIAM Journal on Computing, 17(5):1044–
1060, 1988.

[20] R.E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of the ACM, 22(2):215–225,
1975.

[21] J. Vuillemin. A data structure for manipulating prior-
ity queues. Communications of the ACM, 21:309–314,
1978.

[22] J.W.J. Williams. Algorithm 232: Heapsort. Commu-
nications of the ACM, 7:347–348, 1964.

[23] A.C.C Yao. Probabilistic computations: Toward a
unified measure of complexity (extended abstract). In
Proc. of 18th FOCS, pages 222–227, 1977.

