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Lecture 5: Property Testing and Sublinear-Time Algorithms

Instructor:Or Zamir Scribes:Tomer Shinar

1 Introduction

In previous lectures, we saw examples of using samples of subgraphs to solve a problem on a bigger graph.

Today, we will study cases where we can query only a small part of the input to answer a question about

it.

2 Problems Layout

We are given:

• A very big object (array/ graph)

• A property P that we want to determine whether the object satisfies.

We will ask when we can decide whether the property p holds for the object, without looking at all of it

(using sampling from it). [1]

We have already seen the following examples of sublinear-time algorithms:

• Find Pk in a graph in O(n) time instead of O(m).

• Sampling Edges to see if a graph is dense.

3 Array Majority

Object: binary array

Property: 1-Maj: most of the elements in the array are 1’s.

We consider a relaxed version of the 1-Majority problem:

• If the majority is 1 - we will want to return true

• If the array is ε− far from being 1-maj - we will want to return false

• Otherwise - any result will be accepted.

Definition 1. We will say an object ε− far from a property if we need to change at least ε of its cells

to hold the property. In our case, the array is ε− far from 1-Maj if it has fewer than (1/2− ε)n.

We will want to solve this problem with high probability (say > 90%).

Algorithm 2. We will sample 100
ε2

independent indices and calculate their average. If the average is more

than 1−ε
2 we will say true, otherwise false.

Claim 3. The probability that the sampled average is far from the real average is small. (meaning that

the algorithm returns the correct result with high probability)
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Proof. We will look at the average of the samples:

X = 1
k (X1 + ...+Xk)

Xi ∼ Ber(α)

E[Xi] = α, V (Xi) ≤ 1

E[X] = α, V (X) = 1
k2
kV (Xi) ≤ 1

k1

σ(X) =
√
V (X) ≤

√
1
k = ε

10

From Chebyshev, the probability that X is far by more than 5σ(X) is small.

Claim 4. Every deterministic algorithm for the same problem requires Ω(n)samples.

Proof. We will apply the algorithm for the input x⃗ = 1n. Assume for contradiction the algorithm queries

less than (12 − ε)n. We will mark with I the indices sampled, and define a new input:

xi =

{
1, if i ∈ I

0, if i /∈ I

x is ε− far from the property, but the algorithm does not distinguish between both inputs.

Claim 5. Every algorithm (can be randomized) that works for ε = 0 requires Ω(n) samples.

Proof. For simplicity, we will assume that n is even, majority 1 means > n
2 ones. We will define the

following distribution of inputs:

• Sample uniformly a random vector of length n with n
2 ones.

• Sample uniformly an index i

• Flip the value in the vector at index i

Proof idea: an algorithm that does o(n) will encounter i with probability of o(1), so when it gives its

answer, we ”haven’t decided yet” the correct answer.

4 Graph Property Testing [2]

There are 2 possible models for sampling on a graph:

1. Adjacency Matrix - each query access a cell.

ε− far - changing εm2 cells.

2. - Adjacency List - each vertex has its degree and a pointer to the neighbors array. To query if an

edge exists, there are some hybrid models (have both representations, a sorted neighbors list).

We will focus on the first model.

What properties will be interesting and relevant to test?

1. Connectivity

2. Contains subgraph H of constant size such that H is not bipartite (otherwise, every non-sparse

graph will contain it). For example, triangles.

True: no triangles, False: need to remove > εn2 to remove all triangles.

3. Is graph α-colorable/bipartite?

True: bipartite, False: need to remove > εn2 edges to make it bipartite.
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5 Tester for Bipartite

Algorithm 6. We will sample a small group of vertices v’, check if the induced subgraph G[v′] is bipartite,

and answer the same for the original graph.

If G is bipartite then G[v′] is also bipartite. We will want to show that if G is ε− far from bipartite,

then the induced subgraph, with good probability, will also not be bipartite.

Claim 7. v’ of size
10log( 1

ε
)

ε2
is enough. The number of samples will be Õ(ε4).

We will try to sample a small subgraph that will reduce the number of partitions in the graph that

consist with the subgraph, and then sample more edges to cancel the remaining partitions.

Proof. We will think of the sample as 2 independent parts U, S with sizes |U | = 100 log 1
ε

ε , |S| = 10|U |
ε .

Definition 8. We will define U as ”good” if there are at most ε
6n vertices such that they are not neighbor

of U, and have a degree of ≥ ε
6n.

Claim 9. A randomly chosen U is ”good” with probability ≥ 0.9.

Proof. Let v be a vertex of degree ≥ ε
6n. Every random vertex is a neighbor of v with probability ≥ ε

6 .

So if we randomly choose
100 log 1

ε
ε vertices, the probability that all of them not being neighbor of v is

(1− ε
6)

100 log 1
ε

ε ≤ e
ε
6

100 log 1
ε

ε ≤ ε2.

The expected amount of such vertices is ≤ ε2n, hence the number of such vertices will be lower than ε
6n

with good (≥ 0.9) probability.

Let us look at a possible partition of U: U = U1⊕U2. Such partition means that N(U1), N(U2) are on

different sides. To contradict it, it will be enough to find an edge with both vertices on the same N(Ui).

We will say that such edge violates the partition (U1, U2).

Claim 10. If U is ”good” and U = U1 ⊕ U2 than there are at least εn2

10 edges that violates (U1, U2).

Proof. We will look at a possible partition of the V, N(U1)⊕V \N(U1). Since the graph is ε− far from

bipartite, there are at least εn2 edges inside N(U1) or inside V \ N(U1). Let’s count the edges in the

following groups, knowing that U is ”good”:

• Vertices of degree ≥ ε
6n: ≥

ε
6n

2

• ≥ ε
100n problematic vertices (not neighbors of U): ≥ ε

100n
2

• vertices in U: constant

This sums to ≥ ε
2n

2 edges, so there are at least ε
2n

2 violating edges for (U1, U2).

Every partition (U1, U2) of a ”good” U can be contradicted by a random edge with probability of

≥ ε
10 . If we sample |S| = 10|U |

ε edges, then a specific (U1, U2) will be contradicted with a probability

≥ 1− e−|U |, because the probability that in all samples we missed an edge that violate U ≤ (1− ε
10)

|S| =
(1− ε

10)
10|U|

ε ≤ e−|U |.

The probability there is a partition of U we didn’t contradicted ≤ 2|U |e−|U | = o(1).

Notice that we didn’t sample all edges in S, but only —S— edges in S, and edges between S and U. So,

the total amount of samples is |U |2 + |S|+ |S||U | which is about
log 1

ε
ε3

.
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We managed to solve this problem with Õ( 1
ε3
). It was solved with Õ( 1

ε2
and it was proved that we

need Ω(ε−1.5) samples to solve the problem, but the range between ε−1.5 to ε−2 is still open.

6 Tester for ”G don’t have a subgraph H”

More specifically we will want to test if G have no triangles.

Algorithm 11. We sample a large constant amount of triplets of vertices, for each we will check if they

form a triangle.

If G have not triangles we will always say ”yes”.

If G is ε− far from being triangle free - ?

Side note: the number of samples must be very large, otherwise we could have found a good algorithm

for k-clique when ε = 1
n2 .

Definition 12. Given a graph G and A,B ⊆ V we will define the density

d(A,B) = |E(A,B|
|A||B|

Definition 13. Given a graph G, A,B ⊆ V and γ > 0, we will call (A, B) γ − regular if for all

A′ ⊆ A : |A′| ≥ γ|A|, B′ ⊆ B : |′B| ≥ γ|B| it holds that |d(A′, B′)− d(A,B)| ≤ γ

Theorem 14. Szemerédi regularity lemma

For every γ > 0 and every positive integer l, there exists an integer T = T (γ, l) such that every graph

G = (V,E) with |V | ≥ T has a partition of its vertex set

V = V0 ∪ V1 ∪ · · · ∪ Vt

for some integer t satisfying l ≤ t ≤ T , and the following conditions hold:

• ∀i : ⌊ |V |
t ⌋ ≤ |Vi| ≤ ⌈ |V |

t ⌉

• all but at most γ
(
t
2

)
of the pairs (Vi, Vj), i ̸= j, are γ-regular.

Note: T is a very large function of γ, know to be at least Tower(Poly( 1γ .

Lemma 15. Triangle Removal Lemma

For all ε > 0 exists δ > 0 such that if G is ε − far from being triangle-free, then G have at least δn3

different triangles.

Proof. (δ ≈ 10000ε3

T ( ε
4
,⌈ 4

ε
⌉)3 )

We can assume n is big, otherwise n = O(1) and we can sample everything.

We take a partition from regularity lemma with γ = ε
4 , l = ⌈4ε⌉. We will ignore every edge that matches

on of the following conditions:

• edges inside a part Vi: ≤ t(nt )
2 = n2

t ≤ ε
4n

2

• edges between a non-regular pair: ≤ γn2 ≤ ε
4n

2

• edges in a pair d(V1, V2) <
ε
2 :

t2

2
ε
2(

n
t )

2 < ε
4n

2
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Overall, we deleted less than εn2 edges.After all the deletions, there are still triangles. So the graph

contains parts V1, V2, V3 such that every pair is regular with d(Vi, Vj) <
ε
2 . We will show that each such

triplet have many triangles.

Definition 16. We call v ∈ V1 regular, if it has at least ε
8
n
t neighbors in V2 and at least ε

8
n
t neighbors in

V3.

Claim 17. Most of the vertices in V1 are regular.

Let’s take V ′
1 ⊂ V1, the subset with all vertices that have less than ε

8
n
t neighbors in V2. Notice that

d(V ′
1 , V2) ≤

|V ′
1 |

ε
8

n
t

|V ′
1 ||V2| =

ε
8

So from regularity |V ′
1 | < γ|V1| = ε

4
n
t . The same is correct for V3, so except for ε

2
n
t , all other vertices of

V1 ((1− ε
2)

n
t vertices) are regular.

If v ∈ V1 is regular, we will look at V ′
2 , V

′
3 his neighbors in V2, V3. Each edge between its neighbors

will create a triangle, so it is in at least |E(V ′
2 , V

′
3)| triangles.

|E(V ′
2 , V

′
3)| ≥ (d(V2, V3)− γ)|V ′

2 ||V ′
3 | = Ω(εεnt ε

n
t ) = Ω(ε3 n

2

t2
)

Sum for all regular v we will get Ω(ε3 n
3

t3
)
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