CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) March 17, 2025

Lecture 1: Finding a triangle in a graph using external combinatorics

Instructor: Or Zamir

Scribes: *Liad Iluz*

1 Introduction

The first topic in the course examines whether and how the sparsity of a graph affects the complexity of solving graph problems. We begin with the following general problem:

Problem 1. (Pattern Detection) Given a fixed-size graph H and a graph G with n vertices and m edges. Does H appear in G? In other words, is H a sub-graph of G?

For example, if $H = K_3 = C_3$ (a triangle), we seek an efficient algorithm to determine whether G contains a triangle.

Today's lecture is about 1) Finding a triangle in a sparse graph, and 2) Extremal Combinatorics and its usages for Finding a triangle, a rectangle, a k-path and an even cycle in graphs.

2 Does G contain a triangle?

Solution 2. Naïve solution: Check every group of three vertices. This algorithm runs in $O(n^3)$ time.

Reminder 3. There are two standard ways to represent edges in a graph:

- Adjacency matrix: Let G = (V, E) be a graph. The adjacency matrix of G is a n × n-matrix, such that A_{uv} = 1 if (u, v) ∈ E and 0 otherwise.
 Space complexity: O(n²) Checking if (u, v) ∈ E takes O(1) time.
- Adjacency lists: Each v ∈ V has a list of all its neighbors. Space complexity: O(m) Checking if (u, v) ∈ E takes O(d(u)) time Naively, O(log(n)) time using a search tree or O(1) time using hash table.

Reminder 4. Matrix Multiplication Time – Given two $n \times n$ matrices A and B, we denote by ω the best exponent such that the matrix product AB can be computed in $O(n^{\omega})$ time. Currently, $2 \leq \omega \leq 2.372$. We will use fast matrix multiplication (FMM) as a black-box to solve other problems.

Solution 5. A graph G contains a triangle if and only if $(A^3)_{uu} = 1$ for some $u \in V$. This algorithm takes $O(n^{\omega})$ time.

Remark 6. Note that, in general, $(A^k)_{uv}$ represents the number of paths of length k from vertex u to vertex v in the graph G. Furthermore, we could use A and A^2 to detect triangles in G.

Question: If $H = C_4$ (a cycle of length 4), can we use the same algorithm with A^4 ? No! A^k represents the number of paths of length k in G, but these paths might not be simple (they may include walks). Note that C_3 is always simple. Alternatively, G contains C_4 if and only if $(A^2)_{uv} \ge 2$ for some $u \neq v \in V$.

2.1 Finding a Triangle in Sparse Graphs $(m \ll n^2)$

We aim to find an algorithm that also takes into account the number of edges, m. This way, if G has relatively few edges, the algorithm will perform better.

Solution 7. For each edge $(u, v) \in E$, check if its endpoints form a triangle by search a common neighbor of them (i.e., $w \in (N_u \cap N_v) \setminus \{u, v\}$). This algorithm runs in O(nm) time.

Solution 8 (An $O(m^{3/2})$ Algorithm). The main idea: Define a threshold for the degree of a vertex, d, and handle vertices with degree $\leq d$ differently from those with degree > d. The key insight is that processing vertices with degree $\leq d$ takes little time, while sparse graphs typically contain few vertices with degree greater than d.

In More Detail:

For each edge $e = (u, v) \in E$:

- 1. If $d_u > d$ and $d_v > d$, use the basic algorithm. The total number of vertices in this category is at most $\frac{\sum_v d_v}{d} = \frac{2m}{d}$, leading to an overall time complexity of $O\left(\frac{2m}{d} \cdot m\right)$.
- 2. If $d_u \leq d$ or $d_v \leq d$, we can check if the edge closes a triangle by examining at most d vertices. This step takes O(md) time in total.

Choosing $d = \sqrt{m}$ minimizes both expressions, yielding a time complexity of $O(m^{3/2})$. Exercises:

- 1. Show that we can also count the triangles in the graph in $O(n^{\omega})$ time.
- 2. Show that we can find a triangle in $O(m^{\frac{2\omega}{1+\omega}})$ time (use both algorithms).

We now continue discussing the following questions:

- 1. How does the number of edges in a graph affect the existence of subgraphs from a combinatorial point of view?
- 2. **Sparsification:** Can we reduce a general graph to a sparse graph for certain problems while preserving the solution?
- 3. **Spanner:** Given an unweighted, undirected graph G and a parameter k, can we create a subgraph $G' \subseteq G$ such that:
 - (a) $dist_G(u, v) \leq dist_{G'}(u, v) \leq k \cdot dist_G(u, v)$ for every $u, v \in V$; and
 - (b) G' is sparse?

3 Extremal Combinatorics / Extremal Graph Theory

Definition 9 (Extremal Number of a Graph). Let H be a fixed-size graph. The extremal number of H, or the Turán number of H, denoted by ex(H,n), is the maximal number of edges in a graph with n vertices that **does not** contain H as a subgraph.

Remark 10. The extremal number ex(H, n) is well-defined, and $0 \le ex(H, n) \le {n \choose 2}$.

Theorem 11 (Mantel, 1907 [1]). $ex(K_3, n) = \lfloor \frac{n^2}{4} \rfloor$

Proof. We need to prove two things: (1) There exists a graph with $\lfloor \frac{n^2}{4} \rfloor$ edges does not contain a triangle (i.e., K_3) as a subgraph; and (2) Every graph with $> \lfloor \frac{n^2}{4} \rfloor$ edges contains a triangle.

For the first direction, consider a complete bipartite graph with $\lfloor \frac{n}{2} \rfloor$ vertices on one side and $\lceil \frac{n}{2} \rceil$ vertices on the other side. This graph contains $\lfloor \frac{n^2}{4} \rfloor$ edges and does not have a triangle.

For the second direction, we will provide two proofs:

1. First proof — by induction on n:

- Base case: $ex(K_3, 3) = 2$ and $ex(K_3, 4) = 4$ by simple checking of all possible graphs with 3 vertices and 3 edges, and with 4 vertices and 5 edges, respectively.
- Inductive step: Assume that the claim holds for all values less than n. Let (u, v) be an edge in a graph with $> \lfloor \frac{n^2}{4} \rfloor$ edges. First, we have $N_u \cap N_v = \emptyset$, since otherwise a triangle would form. Therefore, $d(u) + d(v) \le n$.

The graph obtained by removing u, v, and all edges incident to them is a graph with n-2 vertices and no triangle, since otherwise we would have a triangle in G. Notice that at most n-1 edges are deleted from the original graph. From the induction hypothesis:

$$ex(K_3, n) \le ex(K_3, n-2) + (n-1) \le \lfloor \frac{(n-2)^2}{4} \rfloor + n - 1 = \lfloor \frac{n^2}{4} \rfloor$$

2. Second proof — using Jensen's inequality: We saw that for every edge $(u, v) \in E$, $d(u) + d(v) \le n$. Therefore,

$$m \cdot n \ge \sum_{(u,v) \in E} (d(u) + d(v)) = \sum_{v \in V} d(v)^2 = n \cdot \frac{1}{n} \sum_{v \in V} d(v)^2 \ge_{\text{Jensen}} n \cdot \left(\frac{1}{n} \sum_{v} d(v)\right)^2 = \frac{4m^2}{n}.$$

So, we have $m \leq \frac{n^2}{4}$.

Theorem 12 (Turan, 1941 [2]). $ex(K_{r+1}, n) \leq (1 - \frac{1}{r}) \cdot \frac{n^2}{2}$

Proof. First direction (\leq): As done previously, we divide the *n* vertices into *r* equal groups and connect any pair of vertices that are not in the same group. By the pigeonhole principle, there is no K_{r+1} in this graph (See figure 1). Moreover, the number of edges is

$$\frac{n^2}{2} - r \cdot \frac{(n/r)^2}{2} = \left(1 - \frac{1}{r}\right) \cdot \frac{n^2}{2}$$

The second direction is given as an exercise (it can also be done by induction).

Theorem 13 (Erdős-Stone-Simonovits [3]). $ex(H,n) = \left(1 - \frac{1}{\chi(H)-1} + o(1)\right) \cdot \frac{n^2}{2}$, where $\chi(H)$ is the chromatic number of H.

This is given without a proof (the first direction is similar).

Figure 1: The first direction of the proof of Turan's theorem

3.1 Does G contain a path of length k? Rectangle? Even cycle?

We may notice that if H is a bipartite graph, the last theorem does not provide useful information, as it would give a condition of $o(1) \cdot \frac{n^2}{2}$ edges. We now want to explore further for P_k , a simple path of length k, and for C_{2k} , a cycle of even length.

Theorem 14. $ex(P_k, n) \leq kn$

Lemma 15. If a graph has $m \ge d \cdot n$ edges, then it contains a subgraph with a minimum degree of at least d.

Proof. We prove this by greedy construction. Unless the graph contains a vertex with degree less than d, we repeatedly remove such vertices along with their incident edges. We need to show that this process will end with a non-empty graph. Initially, the average degree is $\frac{2m}{n} \ge 2d$. We claim that the average degree will always remain $\ge 2d$. Therefore, the graph will never become empty. Indeed, in every deletion, the number of vertices decreases by 1, and the sum of all degrees decreases by at most 2d.

Proof. (of the theorem) From the previous lemma, any graph with at least kn edges contains a subgraph with a minimum degree of at least k. We now start with some vertex in this subgraph and proceed along a path of length k - 1, where at each step, we choose a neighbor that has not yet appeared on the path.

Theorem 16 (Zarnkevitch). $ex(C_4, n) = \Theta(n^{3/2})$

Proof. First direction: We will show that every graph with $O(n^{3/2})$ edges contains C_4 . A crucial observation is that if the number of 2-paths, $\#P_2$, is at least n^2 , then the graph contains a C_4 (this follows from the pigeonhole principle, which guarantees that there are at least two distinct 2-paths between the same pair of vertices). Therefore, it suffices to show that if $m > 2n^{3/2}$, then $\#P_2 \gg n^2$. Let's compute:

$$\#P_2 = \sum_{v} \binom{d(v)}{2} \ge n \cdot \binom{\left(\frac{1}{n} \sum_{v} d(v)\right)}{2} = n \cdot \binom{\frac{2m}{n}}{2} \approx \frac{2m^2}{n},$$

Figure 2: A line in the plane \mathbb{Z}_p^2

where the first step follows from considering the middle vertex in each 2-path, and the second step uses Jensen's inequality.

Therefore, if

$$\frac{2m^2}{n} > n^2 \iff m^2 > \frac{n^3}{2} \iff m > \frac{n^{3/2}}{\sqrt{2}}$$

then G contains a C_4 as a subgraph.

Second direction: We will show that $ex(C_4, n) \ge \Omega(n^{3/2})$, i.e., we will construct a graph with $\Omega(n^{3/2})$ edges that does not contain a C_4 . Let p be a prime number. Consider the plane \mathbb{Z}_p^2 and define all lines in this plane as follows (See figure 2):

$$\forall y_0, m \in \mathbb{Z}_p : L_{y_0,m} := \{ (x, y_0 + mx) \mod p : x \in \mathbb{Z}_p \}.$$

From this definition, we get two properties of the lines:

- 1. For every y_0, m : $|L_{y_0,m}| = p$.
- 2. If $(y_1, m_1) \neq (y_2, m_2)$, then $|L_{y_1, m_1} \cap L_{y_2, m_2}| \leq 1$.

The first property is clear. For the second property, consider $(x, y) \in L_{y_1,m_1} \cap L_{y_2,m_2}$. From the definition of the lines:

$$y_1 + xm_1 = y_2 + xm_2 \pmod{p} \implies y_1 - y_2 = x(m_2 - m_1) \pmod{p}$$

Now, if $m_1 = m_2$, then $y_1 = y_2$, meaning either both lines are the same line or parallel lines. Assuming $(y_1, m_1) \neq (y_2, m_2)$, we are in the later case, so $|L_{y_1,m_1} \cap L_{y_2,m_2}| = 0$. Otherwise, $m_1 \neq m_2$, so there exists an inverse to $m_2 - m_1$ in the field \mathbb{Z}_p^* , and thus $x = (m_2 - m_1)^{-1}(y_1 - y_2)$. Hence, there is exactly one common point on the two lines.

Now, we will construct the following graph: G is a bipartite graph with p^2 vertices on the left side (each representing a line in the plane, $L_{y,m}$) and p^2 vertices on the right side (each representing a point in the plane (x, y)). We create an edge between a line and all the points that lie on that line, i.e., $(L_{y,m}, (x, y)) \in E \iff (x, y) \in L_{y,m}$ (See figure 3). This results in a graph G with $n = 2p^2$ vertices and $m = p^3 = \Theta(n^{3/2})$ edges.

Figure 3: The lower bound – graph construction

Observe that a bipartite graph contains a C_4 if and only if there are two vertices with at least two common neighbors. From the second property and the observation above, we conclude that G does not contain a C_4 .

We can now describe an algorithm to find C_4 in a graph with $O(n^2)$ time:

Algorithm 17. Given a graph G. 1. Initialize a 2-dimensional array of size $n^2/2$ with zeros. 2. For every $v \in V$: 2.1. For every pair of neighbors of v : u, w: 2.1.1 If $A_{u,w}$ is marked, return YES. 2.1.2 Otherwise, mark $A_{u,w}$. 3. Return NO.

By the first part of the last proof, after at most n^2 iterations, we will finish. Therefore, this is $O(n^2)$ -time algorithm.

Theorem 18 (Bondy-Simonovitz [4]). $ex(C_{2k}, n) \leq k \cdot n^{1+\frac{1}{k}}$

We will not prove this theorem. As of today, we do not know whether this upper bound is tight, except for some constructions for C_4 , C_6 , and C_{10} .

Theorem 19 (Moore). If a graph has $m \ge 100 \cdot n^{1+\frac{1}{k}}$ edges, then it contains a cycle of length at most 2k (i.e., the girth of the graph is at most 2k).

Proof. By the previous lemma, there exists a subgraph with a minimal degree of $d = 100 \cdot n^{\frac{1}{k}}$ (where $d \ge 100$). Consider some vertex in this subgraph, and look at all paths starting from this vertex up to depth k (for example, using BFS). Observe that if we revisit the same vertex, we have found a cycle of length at most 2k. Otherwise, all the vertices we encounter are distinct. Therefore, the number of vertices in this subgraph will be at least:

$$1 + (d-1) + (d-1)^2 + \dots + (d-1)^k = \frac{(d-1)^{k+1} - 1}{d-1 - 1} \ge (d-1)^k - 1 \ge \left(\frac{d}{2}\right)^k$$

But then,

$$\left(\frac{d}{2}\right)^k \ge 50 \cdot n > n,$$

which leads to a contradiction. Hence, the graph must contain a cycle of length at most 2k.

Back to the spanner question that we introduced earlier, we can now show an algorithm to construct a sparse subgraph that preserves distances up to a factor of k:

Algorithm 20. Given a graph G and a parameter k. Go over every edge $(u, v) \in E$, and add it to the new (sparse) graph G' iff $dist_{G'}(u, v) > k$ at that moment.

At the end of the algorithm, for every $(u, v) \in E$, there will be an alternative path between u and v with length at most k, and essentially all such paths will have length at most k. Therefore, the condition of preserving the path lengths, i.e., $dist_{G'}(u, v) \leq k \cdot dist_G(u, v)$ for every $u, v \in V$, holds. Moreover, G' does not contain a cycle of length at most k+1, since we would not have added the edge that closes such a cycle to G'. Hence, by Moore's theorem, we have:

$$e(G') \le 100 \cdot \frac{k+1}{2} \cdot n^{1+\frac{1}{(k+1)/2}} \le O(n^{1+\frac{2}{k+1}}).$$

References

- [1] W. Mantel, Problem 28, In Wiskundige Opgaven 10 (1907), 60–61.
- [2] P. Tur´an, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.
- [3] P. Erdős and A.H. Stone, On the structure of linear graphs. Bulletin of the American Mathematical Society. 52 (12), (1946), 1087–1091.
- [4] J.A. Bondy, and M. Simonovits, Cycles of even length in graphs, Journal of Combinatorial Theory, Series B, 16 (2),(1974) 97–105.

 \square