CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) June 9th, 2025

Lecture 10: Expanders and Spectral Graph Theory

Instructor: Or Zamir Scribes: Gur Lifshitz

1 Introduction

Today's lecture is about expander graphs from a spectral graph theory perspective. The main topics are

- 1) Linear algebra reminder: Spectral decomposition, quadratic form, eigenvalues characterization.
- 2) Defining the Laplacian of a graph, proving some nice stuff about its eigenvalues and eigenvectors.
- 3) Cheeger inequality full proof.
- 4) Lastly, we will describe an algorithm that finds (fast) a sparse-cut approximation.

2 Linear Algebra Review

Theorem 1 (Spectral Decomposition). Every real symmetric matrix M (i.e., $M = M^T$) can be diagonalized. That is, there exists an orthonormal basis of eigenvectors v_1, \ldots, v_n such that for all $i \in [n]$,

$$Mv_i = \lambda_i v_i$$
.

In matrix form, this means $M = V^T \Lambda V$, where V is orthogonal and Λ is diagonal.

Definition 2. Let M be a matrix. The quadratic form associated with M is the function $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$x^T M y = \sum_{i,j} M_{i,j} x_i y_j$$

for all vectors x, y.

Claim 3 (Maximum Eigenvalue Characterization). If the eigenvalues of M are ordered as $\lambda_1 \leq \cdots \leq \lambda_n$, then

$$\lambda_n = \max_{x \neq 0} \frac{x^T M x}{x^T x}.$$

Proof.

$$\max_{x^T x = 1} x^T M x = \max_{y^T y = 1} y^T \Lambda y = \max \sum_{i=1}^{n} \lambda_i y_i^2 \le \lambda_n,$$

where we used the change of variables $y = V^{-1}x$.

Claim 4 (Minimum and Successive Eigenvalue Characterization). With the same ordering of eigenvalues,

$$\lambda_1 = \min_{x \neq 0} \frac{x^T M x}{x^T x}.$$

Furthermore, if v_1 is an eigenvector corresponding to λ_1 , then

$$\lambda_2 = \min_{\substack{x \neq 0 \\ x \perp v_1}} \frac{x^T M x}{x^T x}.$$

We can further extend this equality for every λ_i .

3 The Laplacian of a Graph

Definition 5. Let A_G be the adjacency matrix of a graph G. The Laplacian matrix of G is defined as

$$L_G = D_G - A_G$$

where D_G is the diagonal degree matrix, i.e., $D_{i,i}$ equals the degree of vertex $v_i \in V$.

Observation 6. Note that

$$L_G = \sum_{(u,v)\in E} L_{(u,v)},$$

where $L_{(u,v)}$ is the Laplacian contribution of the edge (u,v).

Let's compute the quadratic form:

$$x^{T}L_{(u,v)}x = x_{u}^{2} - 2x_{u}x_{v} + x_{v}^{2} = (x_{u} - x_{v})^{2}.$$

Therefore,

$$x^{T}L_{G}x = \sum_{(u,v)\in E} (x_{u} - x_{v})^{2}.$$

Now consider $S \subseteq V$. Observe that

$$\mathbb{1}_S^T L_G \mathbb{1}_S = e(S, S^c),$$

where $e(S, S^c)$ denotes the number of edges crossing from S to its complement.

Claim 7. Let G be an undirected graph with Laplacian eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$. Then:

- 1. $\lambda_1 = 0$ with eigenvector $\vec{1}$.
- 2. G is connected if and only if $\lambda_2 > 0$.

Proof of (1). Since $x^T L_G x \ge 0$ for all x, we have $\lambda_1 = \min_{x^T x = 1} x^T L_G x \ge 0$. Moreover,

$$L_G \vec{1} = (D_G - A_G)\vec{1} = \vec{d} - \vec{d} = 0,$$

so $\lambda_1 = 0$ with eigenvector $\vec{1}$.

Proof of (2). \Rightarrow If G is disconnected, let $S \subset V$ be the vertex set of a connected component. Then $\mathbb{1}, \mathbb{1}_S$ are in $\ker(L_G)$, so $\dim(\ker(L_G)) \geq 2$ and $\lambda_2 = 0$.

 \Leftarrow If $\lambda_2 = 0$, then there exists $x \perp \vec{1}$ with $x^T L_G x = 0$. This implies $(x_u - x_v)^2 = 0$ for all $(u, v) \in E$, so $x_u = x_v$ on each connected component. If G were connected, this would force $x \propto \vec{1}$, contradiction.

Exercise 8. Show that $\lambda_k = 0$ if and only if G has at least k connected components.

Proof. Suppose G has t connected components: $G = G_1 \cup \cdots \cup G_t$. Then

$$L_G = \operatorname{diag}(L_{G_1}, \dots, L_{G_t}).$$

Thus,

$$\ker(L_G) = \ker(L_{G_1}) \oplus \cdots \oplus \ker(L_{G_t}).$$

Since dim $\ker(L_{G_i}) = 1$, we have dim $\ker(L_G) = t$. Therefore, $\lambda_1 = \cdots = \lambda_t = 0$, and $\lambda_{t+1} > 0$ if G has exactly t components.

Does λ_2 provide stronger information about the connectivity of G?

Definition 9. The normalized Laplacian is defined as

$$N_G = D_G^{-1/2} L_G D_G^{-1/2} = I - D_G^{-1/2} A_G D_G^{-1/2}.$$

(Note: We could consider $D_G^{-1}L_G$, but it is not symmetric. Observe that $D_G^{-1/2}(D_G^{-1}L_G)D_G^{1/2} = N_G$ and those matrices are similar.)

Observation 10. The smallest eigenvalue satisfies

$$\lambda_1(N_G) = 0,$$

with eigenvector $v_1 = D_G^{1/2} \vec{1} = \sqrt{\vec{d}}$.

Claim 11.

$$\lambda_2(N_G) = \min_{\substack{x \neq 0 \\ x + \vec{d}}} \frac{x^T L_G x}{x^T D_G x}.$$

Proof.

$$\lambda_2(N_G) = \min_{\substack{y \neq 0 \\ y \perp \sqrt{d}}} \frac{y^T N_G y}{y^T y}$$

$$= \min_{\substack{x \neq 0 \\ x \perp d}} \frac{x^T D_G^{1/2} N_G D_G^{1/2} x}{x^T D_G x}$$

$$= \min_{\substack{x \neq 0 \\ x \perp d}} \frac{x^T L_G x}{x^T D_G x},$$

where we set $y = D_G^{1/2} x$.

4 Cheeger Inequality

Definition 12 (Reminder: Graph Conductance). The conductance of a graph G is defined as

$$\varphi(G) = \min_{x = \mathbb{1}_S \ 0 < \operatorname{Vol}(S) \le \frac{1}{2} \operatorname{Vol}(V)} \frac{x^T L_G x}{x^T D_G x}.$$

Note that conductance is closely related to λ_2 : the expression is the same, but for λ_2 , we minimize over all vectors orthogonal to \vec{d} , while for conductance we minimize over indicator vectors of subsets.

We will now show that they are indeed closely related. The following inequality was proved by Dodziuk [2] and independently Alon and Milman [1] and states that:

Theorem 13 (Cheeger Inequality).

$$\frac{1}{2}\lambda_2(N_G) \le \varphi(G) \le \sqrt{2\lambda_2(N_G)}.$$

Observation 14. 1. G is a good expander (i.e., $\varphi(G)$ is constant) if and only if λ_2 is constant.

2. If λ_2 is very small (e.g., $O(1/\sqrt{n})$), this inequality is not tight.

Claim 15. There exists an algorithm that checks whether G is an expander in $O(n^3)$ time (or faster using fast matrix multiplication).

Proof of Cheeger Inequality. \Rightarrow We aim to prove $\lambda_2(N_G) \leq 2\varphi(G)$.

Take a cut $S \subset V$ with $0 < \operatorname{Vol}(S) \le \frac{1}{2} \operatorname{Vol}(V)$ where

$$\varphi(G) = \frac{\mathbb{1}_S^T L_G \mathbb{1}_S}{\mathbb{1}_S^T D_G \mathbb{1}_S}.$$

Define $x = \mathbb{1}_S - \sigma \vec{1}$ where σ ensures $x \perp \vec{d}$:

$$\vec{d}^T x = 0 \Rightarrow \operatorname{Vol}(S) - \sigma \operatorname{Vol}(V) = 0 \Rightarrow \sigma = \frac{\operatorname{Vol}(S)}{\operatorname{Vol}(V)}.$$

Since $0 < \text{Vol}(S) \le \frac{1}{2} \text{Vol}(V)$, we have $0 < \sigma \le \frac{1}{2}$.

We compute:

$$x^T L_G x = (\mathbb{1}_S - \sigma \vec{1})^T L_G (\mathbb{1}_S - \sigma \vec{1}) = \mathbb{1}_S^T L_G \mathbb{1}_S,$$

where the last equality holds because $L_G \vec{1} = \vec{0}$.

Next, expanding the denominator:

$$x^{T}D_{G}x = (\mathbb{1}_{S} - \sigma \vec{1})^{T}D_{G}(\mathbb{1}_{S} - \sigma \vec{1})$$

$$= \mathbb{1}_{S}^{T}D_{G}\mathbb{1}_{S} - 2\sigma \mathbb{1}_{S}^{T}D_{G}\vec{1} + \sigma^{2}\vec{1}^{T}D_{G}\vec{1}$$

$$= \operatorname{Vol}(S) - 2\sigma \operatorname{Vol}(S) + \sigma^{2} \operatorname{Vol}(V)$$

$$= (1 - \sigma) \operatorname{Vol}(S) \geq \frac{1}{2} \operatorname{Vol}(S).$$

Therefore,

$$\frac{x^T L_G x}{x^T D_G x} \le 2\,\varphi(G).$$

 \Leftarrow Start from a "best" vector $x \neq 0$, $x \perp \vec{d}$ that minimizes

$$\frac{x^T L_G x}{x^T D_G x},$$

and convert it into a sparse cut.

First Step – Centralization. Reindex so that $x_1 \leq x_2 \leq \cdots \leq x_n$. and for each j define the prefix set

$$S_j = \{v_1, v_2, \dots, v_j\}.$$

Take j to be the smallest index satisfying

$$\operatorname{Vol}(S_j) = \sum_{u \in S_j} \deg(u) \ge \frac{1}{2} \operatorname{Vol}(V).$$

Then set

$$y = x - x_i \vec{1}$$
.

By construction, the total degree of the positive entries of y is at most $\frac{1}{2} \operatorname{Vol}(V)$ (and similarly for the negative entries). Moreover,

$$y^{T}L_{G}y = (x - x_{j}\vec{1})^{T}L_{G}(x - x_{j}\vec{1}) = x^{T}L_{G}x,$$

since $L_G \vec{1} = \vec{0}$.

On the other hand,

$$y^{T}D_{G}y = (x - x_{j}\vec{1})^{T}D_{G}(x - x_{j}\vec{1})$$

$$= x^{T}D_{G}x - 2x_{j}(x^{T}D_{G}\vec{1}) + x_{j}^{2}(\vec{1}^{T}D_{G}\vec{1})$$

$$= x^{T}D_{G}x - 2x_{j} \text{Vol}(S) + x_{j}^{2} \text{Vol}(V) \leq x^{T}D_{G}x.$$

(Note: although now $y \not\perp \vec{d}$, we no longer require orthogonality—our goal in the next step is to convert y into an indicator vector, so preserving the quotient bound is sufficient.)

Second Step - Split Positive and Negative Parts.

Write

$$y = y^+ - y^-,$$

where $y_u^+ = \max\{y_u, 0\}$ and $y_u^- = \max\{-y_u, 0\}$. Then

$$y^{T}L_{G}y = \sum_{(u,v)\in E} (y_{u} - y_{v})^{2} = \sum_{(u,v)\in E} ((y_{u}^{+} - y_{v}^{+}) - (y_{u}^{-} - y_{v}^{-}))^{2}$$

$$= \sum_{(u,v)\in E} \left[(y_u^+ - y_v^+)^2 - 2(y_u^+ - y_v^+)(y_u^- - y_v^-) + (y_u^- - y_v^-)^2 \right] \ge (y^+)^T L_G y^+ + (y^-)^T L_G y^-,$$

since each term $(y_u^+ - y_v^+)(y_u^- - y_v^-) \ge 0$.

Likewise, for the denominator,

$$y^T D_G y = (y^+ - y^-)^T D_G (y^+ - y^-) = (y^+)^T D_G y^+ + (y^-)^T D_G y^-,$$

because $y_u^+ y_u^- = 0$ for every u.

Therefore,

$$\frac{(y^+)^T L_G y^+ + (y^-)^T L_G y^-}{(y^+)^T D_G y^+ + (y^-)^T D_G y^-} \le \frac{y^T L_G y}{y^T D_G y}.$$

Now, using the fact that $\min\{\frac{a_1}{b_1},\frac{a_2}{b_2}\} \leq \frac{a_1+a_2}{b_1+b_2}$, we get that if z if either y^+ or y^- :

$$\frac{z^T L_G z}{z^T D_G z} \le \frac{y^T L_G y}{y^T D_G y}$$

Claim 16. Let $\alpha_i \geq 0$ with $\sum_i \alpha_i = 1$, and let $a_i, b_i > 0$. Then

$$\frac{\sum_{i} \alpha_{i} a_{i}}{\sum_{i} \alpha_{i} b_{i}} \geq \min_{i} \frac{a_{i}}{b_{i}}.$$

We will use its continuous version soon.

Thus, using z as above, normalize so $\max_i z_i = 1$. For a random threshold τ with $\tau \sim U(0,1)$ define

$$S_{\tau} = \{ i : z_i^2 > 1 - \tau \}.$$

Then

$$\mathbb{E}_{\tau} \big[\mathbb{1}_{S_{\tau}}^T D_G \mathbb{1}_{S_{\tau}} \big] = \sum_{u} d(u) \operatorname{Pr}[i \in S_{\tau}] = \sum_{u} d(u) z_u^2 = z^T D_G z,$$

and

$$\mathbb{E}_{\tau} \big[\mathbb{1}_{S_{\tau}}^T L_G \mathbb{1}_{S_{\tau}} \big] = \sum_{(u,v) \in E} \Pr \big(\tau \in [1 - z_u, 1 - z_v] \big) = \sum_{(u,v) \in E} |z_u^2 - z_v^2| \le \sqrt{2 \, z^T L_G z \cdot z^T D_G z},$$

where the last step uses Cauchy-Schwarz and the fact that

$$\sum_{(u,v)\in E} (z_u + z_v)^2 \le 2\sum_u d(u)z_u^2 = 2z^T D_G z.$$

Therefore, by applying Claim 16 we get

$$\min_{\tau} \frac{\mathbb{1}_{S_{\tau}}^{T} L_{G} \mathbb{1}_{S_{\tau}}}{\mathbb{1}_{S_{\tau}}^{T} D_{G} \mathbb{1}_{S_{\tau}}} \leq \sqrt{\frac{2 z^{T} L_{G} z}{z^{T} D_{G} z}} = \sqrt{2 \lambda_{2}(N_{G})},$$

showing there exists τ with conductance at most $\sqrt{2 \lambda_2(N_G)}$.

Claim 17. Let $x \neq 0$ satisfy $x \perp \vec{d}$ and

$$\frac{x^T L_G x}{x^T D_G x} \le \gamma.$$

Then in $O(m + n \log n)$ time one can find a cut of conductance at most $\sqrt{2\gamma}$.

Proof. We consider only cuts of the form

$$S_{\tau} = \{ v : x_v \le \tau \}, \quad S_{\tau}^c = V \setminus S_{\tau}.$$

Sort the values x_v in $O(n \log n)$ time. As we sweep through the sorted list, we maintain the current cut and update its boundary size in O(1) per edge (for a total of O(m)). Finally, we return the threshold τ that minimizes $\frac{e(S_\tau, S_\tau^c)}{\operatorname{Vol}(S_\tau)}$.

Remark. Computing the exact second eigenvector v_2 can be expensive, but one can use fast approximate solvers to obtain a vector x whose quotient is within a small constant factor of $\lambda_2(N_G)$.

Exercise 18 (Expander Mixing Lemma). Let G be a d-regular graph on n vertices with λ being the second-largest eigenvalue of A_G . Show that for any $S, T \subseteq V$,

$$\left| e(S,T) - \frac{d}{n} |S| |T| \right| \le \sqrt{\lambda |S| |T|}.$$

References

- [1] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.
- [2] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks. Transactions of the American Mathematical Society, 284(2):787–794, 1984.