
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) June 9th, 2025

Lecture 10: Expanders and Spectral Graph Theory

Instructor:Or Zamir Scribes:Gur Lifshitz

1 Introduction

Today’s lecture is about expander graphs from a spectral graph theory perspective. The main topics are

1) Linear algebra reminder: Spectral decomposition, quadratic form, eigenvalues characterization.

2) Defining the Laplacian of a graph, proving some nice stuff about its eigenvalues and eigenvectors.

3) Cheeger inequality - full proof.

4) Lastly, we will describe an algorithm that finds (fast) a sparse-cut approximation.

2 Linear Algebra Review

Theorem 1 (Spectral Decomposition). Every real symmetric matrix M (i.e., M = MT ) can be diago-

nalized. That is, there exists an orthonormal basis of eigenvectors v1, . . . , vn such that for all i ∈ [n],

Mvi = λivi.

In matrix form, this means M = V TΛV , where V is orthogonal and Λ is diagonal.

Definition 2. Let M be a matrix. The quadratic form associated with M is the function Rn × Rn → R
defined by

xTMy =
∑
i,j

Mi,jxiyj

for all vectors x, y.

Claim 3 (Maximum Eigenvalue Characterization). If the eigenvalues of M are ordered as λ1 ≤ · · · ≤ λn,

then

λn = max
x ̸=0

xTMx

xTx
.

Proof.

max
xT x=1

xTMx = max
yT y=1

yTΛy = max
∑

λiy
2
i ≤ λn,

where we used the change of variables y = V −1x.

Claim 4 (Minimum and Successive Eigenvalue Characterization). With the same ordering of eigenvalues,

λ1 = min
x ̸=0

xTMx

xTx
.
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Furthermore, if v1 is an eigenvector corresponding to λ1, then

λ2 = min
x ̸=0
x⊥v1

xTMx

xTx
.

We can further extend this equality for every λi.

3 The Laplacian of a Graph

Definition 5. Let AG be the adjacency matrix of a graph G. The Laplacian matrix of G is defined as

LG = DG −AG,

where DG is the diagonal degree matrix, i.e., Di,i equals the degree of vertex vi ∈ V .

Observation 6. Note that

LG =
∑

(u,v)∈E

L(u,v),

where L(u,v) is the Laplacian contribution of the edge (u, v).

Let’s compute the quadratic form:

xTL(u,v)x = x2u − 2xuxv + x2v = (xu − xv)
2.

Therefore,

xTLGx =
∑

(u,v)∈E

(xu − xv)
2.

Now consider S ⊆ V . Observe that

1T
SLG1S = e(S, Sc),

where e(S, Sc) denotes the number of edges crossing from S to its complement.

Claim 7. Let G be an undirected graph with Laplacian eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Then:

1. λ1 = 0 with eigenvector 1⃗.

2. G is connected if and only if λ2 > 0.

Proof of (1). Since xTLGx ≥ 0 for all x, we have λ1 = minxT x=1 x
TLGx ≥ 0. Moreover,

LG1⃗ = (DG −AG)⃗1 = d⃗− d⃗ = 0,

so λ1 = 0 with eigenvector 1⃗.

Proof of (2). ⇒ If G is disconnected, let S ⊂ V be the vertex set of a connected component. Then

1,1S are in ker(LG), so dim(ker(LG)) ≥ 2 and λ2 = 0.
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⇐ If λ2 = 0, then there exists x ⊥ 1⃗ with xTLGx = 0. This implies (xu−xv)
2 = 0 for all (u, v) ∈ E, so

xu = xv on each connected component. If G were connected, this would force x ∝ 1⃗, contradiction.

Exercise 8. Show that λk = 0 if and only if G has at least k connected components.

Proof. Suppose G has t connected components: G = G1 ∪ · · · ∪Gt. Then

LG = diag(LG1 , . . . , LGt).

Thus,

ker(LG) = ker(LG1)⊕ · · · ⊕ ker(LGt).

Since dimker(LGi) = 1, we have dimker(LG) = t. Therefore, λ1 = · · · = λt = 0, and λt+1 > 0 if G has

exactly t components.

Does λ2 provide stronger information about the connectivity of G?

Definition 9. The normalized Laplacian is defined as

NG = D
−1/2
G LGD

−1/2
G = I −D

−1/2
G AGD

−1/2
G .

(Note: We could consider D−1
G LG, but it is not symmetric. Observe that D

−1/2
G (D−1

G LG)D
1/2
G = NG and

those matrices are similar.)

Observation 10. The smallest eigenvalue satisfies

λ1(NG) = 0,

with eigenvector v1 = D
1/2
G 1⃗ =

√
d⃗.

Claim 11.

λ2(NG) = min
x ̸=0

x⊥d⃗

xTLGx

xTDGx
.

Proof.

λ2(NG) = min
y ̸=0

y⊥
√

d⃗

yTNGy

yT y

= min
x ̸=0

x⊥d⃗

xTD
1/2
G NGD

1/2
G x

xTDGx

= min
x ̸=0

x⊥d⃗

xTLGx

xTDGx
,

where we set y = D
1/2
G x.
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4 Cheeger Inequality

Definition 12 (Reminder: Graph Conductance). The conductance of a graph G is defined as

φ(G) = min
x=1S 0<Vol(S)≤ 1

2
Vol(V )

xTLGx

xTDGx
.

Note that conductance is closely related to λ2: the expression is the same, but for λ2, we minimize

over all vectors orthogonal to d⃗, while for conductance we minimize over indicator vectors of subsets.

We will now show that they are indeed closely related. The following inequality was proved by Dodziuk

[2] and independently Alon and Milman [1] and states that:

Theorem 13 (Cheeger Inequality).

1

2
λ2(NG) ≤ φ(G) ≤

√
2λ2(NG).

Observation 14. 1. G is a good expander (i.e., φ(G) is constant) if and only if λ2 is constant.

2. If λ2 is very small (e.g., O(1/
√
n)), this inequality is not tight.

Claim 15. There exists an algorithm that checks whether G is an expander in O(n3) time (or faster

using fast matrix multiplication).

Proof of Cheeger Inequality. ⇒ We aim to prove λ2(NG) ≤ 2φ(G).

Take a cut S ⊂ V with 0 < Vol(S) ≤ 1
2 Vol(V ) where

φ(G) =
1T
SLG1S

1T
SDG1S

.

Define x = 1S − σ1⃗ where σ ensures x ⊥ d⃗:

d⃗ Tx = 0 ⇒ Vol(S)− σVol(V ) = 0 ⇒ σ =
Vol(S)

Vol(V )
.

Since 0 < Vol(S) ≤ 1
2 Vol(V ), we have 0 < σ ≤ 1

2 .

We compute:

xTLGx = (1S − σ 1⃗)T LG (1S − σ 1⃗) = 1T
SLG1S ,

where the last equality holds because LG1⃗ = 0⃗.

Next, expanding the denominator:

xTDGx = (1S − σ 1⃗)TDG(1S − σ 1⃗)

= 1T
SDG1S − 2σ 1T

SDG1⃗ + σ2 1⃗TDG1⃗

= Vol(S) − 2σ Vol(S) + σ2 Vol(V )

= (1− σ) Vol(S) ≥ 1
2 Vol(S).
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Therefore,
xTLGx

xTDGx
≤ 2φ(G).

⇐ Start from a “best” vector x ̸= 0, x ⊥ d⃗ that minimizes

xTLGx

xTDGx
,

and convert it into a sparse cut.

First Step – Centralization. Reindex so that x1 ≤ x2 ≤ · · · ≤ xn. and for each j define the

prefix set

Sj = {v1, v2, . . . , vj}.

Take j to be the smallest index satisfying

Vol(Sj) =
∑
u∈Sj

deg(u) ≥ 1
2 Vol(V ).

Then set

y = x− xj 1⃗.

By construction, the total degree of the positive entries of y is at most 1
2 Vol(V ) (and similarly for

the negative entries). Moreover,

yTLGy = (x− xj 1⃗)
TLG(x− xj 1⃗) = xTLGx,

since LG1⃗ = 0⃗.

On the other hand,

yTDGy = (x− xj 1⃗)
TDG(x− xj 1⃗)

= xTDGx − 2xj (x
TDG1⃗) + x2j (⃗1

TDG1⃗)

= xTDGx − 2xj Vol(S) + x2j Vol(V ) ≤ xTDGx.

(Note: although now y ̸⊥ d⃗, we no longer require orthogonality—our goal in the next step is to

convert y into an indicator vector, so preserving the quotient bound is sufficient.)

Second Step – Split Positive and Negative Parts.

Write

y = y+ − y−,

where y+u = max{yu, 0} and y−u = max{−yu, 0}. Then

yTLGy =
∑

(u,v)∈E

(yu − yv)
2 =

∑
(u,v)∈E

(
(y+u − y+v )− (y−u − y−v )

)2
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=
∑

(u,v)∈E

[
(y+u − y+v )

2 − 2(y+u − y+v )(y
−
u − y−v ) + (y−u − y−v )

2
]

≥ (y+)TLGy
+ + (y−)TLGy

−,

since each term (y+u − y+v )(y
−
u − y−v ) ≥ 0.

Likewise, for the denominator,

yTDGy = (y+ − y−)TDG(y
+ − y−) = (y+)TDGy

+ + (y−)TDGy
−,

because y+u y−u = 0 for every u.

Therefore,
(y+)TLGy

+ + (y−)TLGy
−

(y+)TDGy+ + (y−)TDGy−
≤ yTLGy

yTDGy
.

Now, using the fact that min{a1
b1
, a2b2 } ≤ a1+a2

b1+b2
, we get that if z if either y+ or y−:

zTLGz

zTDGz
≤ yTLGy

yTDGy
.

Claim 16. Let αi ≥ 0 with
∑

i αi = 1, and let ai, bi > 0. Then∑
i αiai∑
i αibi

≥ min
i

ai
bi
.

We will use its continuous version soon.

Thus, using z as above, normalize so maxi zi = 1. For a random threshold τ with τ ∼ U(0, 1) define

Sτ = { i : z2i > 1− τ}.

Then

Eτ

[
1T
Sτ
DG1Sτ

]
=

∑
u

d(u) Pr[i ∈ Sτ ] =
∑
u

d(u) z2u = zTDGz,

and

Eτ

[
1T
Sτ
LG1Sτ

]
=

∑
(u,v)∈E

Pr
(
τ ∈ [ 1− zu, 1− zv ]

)
=

∑
(u,v)∈E

|z2u − z2v | ≤
√
2 zTLGz · zTDGz,

where the last step uses Cauchy–Schwarz and the fact that∑
(u,v)∈E

(zu + zv)
2 ≤ 2

∑
u

d(u)z2u = 2zTDGz.

Therefore, by applying Claim 16 we get

min
τ

1T
Sτ
LG1Sτ

1T
Sτ
DG1Sτ

≤

√
2 zTLGz

zTDGz
=

√
2λ2(NG),

6



showing there exists τ with conductance at most
√
2λ2(NG).

Claim 17. Let x ̸= 0 satisfy x ⊥ d⃗ and
xTLGx

xTDGx
≤ γ.

Then in O(m+ n log n) time one can find a cut of conductance at most
√
2γ.

Proof. We consider only cuts of the form

Sτ = { v : xv ≤ τ}, Sc
τ = V \ Sτ .

Sort the values xv in O(n log n) time. As we sweep through the sorted list, we maintain the current cut

and update its boundary size in O(1) per edge (for a total of O(m)). Finally, we return the threshold τ

that minimizes
e(Sτ , S

c
τ )

Vol(Sτ )
.

Remark. Computing the exact second eigenvector v2 can be expensive, but one can use fast approximate

solvers to obtain a vector x whose quotient is within a small constant factor of λ2(NG).

Exercise 18 (Expander Mixing Lemma). Let G be a d-regular graph on n vertices with λ being the

second-largest eigenvalue of AG. Show that for any S, T ⊆ V ,∣∣e(S, T )− d
n |S| |T |

∣∣ ≤
√
λ |S| |T |.
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