CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025)  June 9th, 2025

Lecture 10: Expanders and Spectral Graph Theory

Instructor: Or Zamir Scribes: Gur Lifshitz

1 Introduction

Today’s lecture is about expander graphs from a spectral graph theory perspective. The main topics are
1) Linear algebra reminder: Spectral decomposition, quadratic form, eigenvalues characterization.

2) Defining the Laplacian of a graph, proving some nice stuff about its eigenvalues and eigenvectors.

)
3) Cheeger inequality - full proof.
)

4) Lastly, we will describe an algorithm that finds (fast) a sparse-cut approximation.

2 Linear Algebra Review

Theorem 1 (Spectral Decomposition). Every real symmetric matriz M (i.e., M = M™T) can be diago-
nalized. That is, there exists an orthonormal basis of eigenvectors vi, ..., v, such that for all i € [n],

MUZ‘ = )\ivi.

In matriz form, this means M = VTAV, where V is orthogonal and A is diagonal.

Definition 2. Let M be a matriz. The quadratic form associated with M is the function R™ x R® — R
defined by

xTMy = Z M@j:riyj
i?j
for all vectors x,y.

Claim 3 (Maximum Eigenvalue Characterization). If the eigenvalues of M are ordered as Ay < -+ < Ay,
then

' Max
Ap = max T
x#0 T X
Proof.
T T 2

max x° Mx = max y' Ay = max Ay < A,

max pex " Ay D Al <A
where we used the change of variables y = V ~lz. O

Claim 4 (Minimum and Successive Eigenvalue Characterization). With the same ordering of eigenvalues,




Furthermore, if v1 is an eigenvector corresponding to \1, then

T Mz
A2 = min ——.
z#£0 T X
xlvg

We can further extend this equality for every ;.

3 The Laplacian of a Graph

Definition 5. Let Ag be the adjacency matriz of a graph G. The Laplacian matrix of G is defined as

L = D¢ — Ag,
where D¢ is the diagonal degree matriz, i.e., D;; equals the degree of vertex v; € V.

Observation 6. Note that

Lg = Z L(u,v)a

(u,v)EE

where Ly, ts the Laplacian contribution of the edge (u,v).
Let’s compute the quadratic form:

T 2 2 2
T Lyp) T = Ty — 2Ty Ty + T = (Ty — )~

Therefore,

e Lgr = Z (20 — )2
(u,w)EE

Now consider S C V. Observe that
1§Lals = e(S, 59,

where (S, S¢) denotes the number of edges crossing from S to its complement.

Claim 7. Let G be an undirected graph with Laplacian eigenvalues 0 = A\p < Ay < -+ < Ay

1. A\ = 0 with eigenvector 1.
2. G is connected if and only if Ao > 0.

Proof of (1). Since 2 Lgx > 0 for all z, we have A\; = min,r,_; 2/ Lgz > 0. Moreover,

Lol =(Dg—Ag)l=d—d=0,

so A1 = 0 with eigenvector 1.

Then:

O

Proof of (2). = If G is disconnected, let S C V be the vertex set of a connected component. Then

1,15 are in ker(Lq), so dim(ker(Lg)) > 2 and Ay = 0.



< If Ay = 0, then there exists # | T with 27 Lgz = 0. This implies (z,, —x,)? = 0 for all (u,v) € E, so
T, = Xp on each connected component. If G were connected, this would force x f, contradiction.

O
Exercise 8. Show that Ay, = 0 if and only if G has at least k connected components.
Proof. Suppose G has t connected components: G = G; U ---UGy. Then
LG = diag(LGl, ceey LGt)-
Thus,
ker(Lg) = ker(Lg,) ® - - @ ker(Lg,).
Since dimker(Lg,) = 1, we have dimker(Lg) = t. Therefore, A\; = --- = A\ = 0, and M\y1 > 0 if G has
exactly ¢ components. O

Does A9 provide stronger information about the connectivity of G?

Definition 9. The normalized Laplacian is defined as
N = DG’ LaDG? =1 - DG AeDG M2,

(Note: We could consider Déng, but it is not symmetric. Observe that Dal/Q(Déng)DgQ = Ng and
those matrices are similar.)

Observation 10. The smallest eigenvalue satisfies

A (Ng) =0,

with eigenvector vi = Dé/Qq = \/c?

Claim 11.

Proof.

Xo(Ng) = min
2(Ne) = min =7

yL\/Q
Tpl/2 N ., pl/?
:minx ¢ NGYg T

270 2T Dgx
zld

. xTLGx

= min —————

240 2T Dgx’
xzld

where we set y = Dé/za:. O



4 Cheeger Inequality
Definition 12 (Reminder: Graph Conductance). The conductance of a graph G is defined as

T
L

o(Q) = min a:T G

z=1g 0<Vol(S)<1Vol(v) 2" Dgx

Note that conductance is closely related to Ao: the expression is the same, but for Ao, we minimize
over all vectors orthogonal to d_; while for conductance we minimize over indicator vectors of subsets.

We will now show that they are indeed closely related. The following inequality was proved by Dodziuk
[2] and independently Alon and Milman [1] and states that:

Theorem 13 (Cheeger Inequality).

1
322(Ng) < ¢(G) < V2Xa(Ne)-
Observation 14. 1. G is a good expander (i.e., p(G) is constant) if and only if Aa is constant.
2. If Ay is very small (e.g., O(1/y/n)), this inequality is not tight.
Claim 15. There exists an algorithm that checks whether G is an expander in O(n3) time (or faster
using fast matriz multiplication).
Proof of Cheeger Inequality. = We aim to prove \a(Ng) < 2¢(G).
Take a cut S C V with 0 < Vol(S) < 3 Vol(V) where

_ 1LLcls
1LDe1s’

¢(G)

Define z = 195 — o1 where o ensures x L d:

Vol(S)
Vol(V)

ATz =0= Vol(S) — o Vol(V) =0 = 0 =

Since 0 < Vol(S) < £ Vol(V), we have 0 < o < 1.
We compute:

tTLor=(1s— o) Lg(ls —o1) =1L Lg1s,
where the last equality holds because L1 = 0.

Next, expanding the denominator:

2T Dgr = (1 —01)TDg(1ls — o 1)
=1LDc1s — 20 1EDeT + 0217 Dl
= Vol(S) — 20 Vol(S) + &% Vol(V)
=(1—0) Vol(S) > 1 Vol(9).



Therefore,
T Lax
2T Dgx

<2¢(G).

Start from a “best” vector z # 0, z L d that minimizes

T Loz
2T Dgx’

and convert it into a sparse cut.

First Step — Centralization. Reindex so that 1 < 2o < --- < z,. and for each j define the
prefix set

Sj = {1)1, V2,... ,Uj}.
Take j to be the smallest index satisfying
Vol(S;) = Y deg(u) > § Vol(V).
uESj

Then set
y=1z—x; 1.

By construction, the total degree of the positive entries of y is at most % Vol(V) (and similarly for
the negative entries). Moreover,

y'Lay = (v —2;1) Lo(x — ;1) = 2" Lea,
since Lgf =0.
On the other hand,
y' Dy = (x — 2;1)T Dg(z — ;1)
= Z'TDGJ‘ — 21‘j (SL‘TDgf) + :L‘j2 (TTDgf)
=a"Dgx — 2x; Vol(S) + m? Vol(V) < z' Dgx.

(Note: although now y [ CZ; we no longer require orthogonality—our goal in the next step is to
convert y into an indicator vector, so preserving the quotient bound is sufficient.)

Second Step — Split Positive and Negative Parts.
Write

y=y" -y,
where y;7 = max{y,,0} and y, = max{—y,,0}. Then

ViLey= > u-w)l= > (W —v) - —w))’

(u,v)EE (u,v)EE



Z (i = =208 — v —v) + v — )] = W Lay™ + () Lay™,
w0)Er

since each term (y; — y,7) (v, — v, ) > 0.

Likewise, for the denominator,
y"Day = (y* =y )" Daly* —y7) = (v") Day™ + (y7) Day,

because y, v, = 0 for every u.

Therefore,
W) Loyt + () Lay” _ y'Lay
()" Day* + (y~)"Day~ ~ y"Dagy
Now, using the fact that min{f!, 2} < %112227 we get that if z if either y* or y:

2T Laz < y!' Lay
'Dgz =~ y"'Day

Claim 16. Let a; > 0 with ), o; = 1, and let a;,b; > 0. Then

> oiay > g %

min —.

doasbi T i b
We will use its continuous version soon.
Thus, using z as above, normalize so max; z; = 1. For a random threshold 7 with 7 ~ U(0, 1) define
S,={i:z2>1-7}.

Then
E-[1% D¢ls, ] Zd ) Prfi € S;] Zd 22 =2TDgz,

and

E-[1§ Lels, | = Z Pr(re[l—zy, 1—2]) = Z 22— 22| < V22TLgz - 2TDgz,
(u,v)EE (u,w)EE

where the last step uses Cauchy—Schwarz and the fact that

Z (zu +2,)? < 2 Zd(u)zg =2:"Dgz.

(u,v)EE

Therefore, by applying Claim 16 we get

17 Lg1 22TL
minijsf G5 < 7'; GZ _ 2 X2(Ng),
T lsTDglgT zI'Dgz



showing there exists 7 with conductance at most /2 \a(Ng).

Claim 17. Let x # 0 satisfy x L d and
I Lax
2T’ Dgx —

Then in O(m + nlogn) time one can find a cut of conductance at most /2.

Proof. We consider only cuts of the form
Sr={v:iz, <7}, SE=V\S,.

Sort the values z, in O(nlogn) time. As we sweep through the sorted list, we maintain the current cut

and update its boundary size in O(1) per edge (for a total of O(m)). Finally, we return the threshold 7
e(S-, %) 0
Vol(S;)

that minimizes
Remark. Computing the exact second eigenvector vy can be expensive, but one can use fast approximate
solvers to obtain a vector  whose quotient is within a small constant factor of \y(Ng).

Exercise 18 (Expander Mixing Lemma). Let G be a d-regular graph on n vertices with A\ being the
second-largest eigenvalue of Ag. Show that for any S, T CV,

|e(S.T) = 2 ISI|TI| < /AIS|IT].
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