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Lecture 11: Graph Random Walks

Instructor:Or Zamir Scribes:Nir Shahar

1 Introduction

We have already seen in previous courses the concept of a random walk on a ”straight line” (i.e, the

number line), and now we want to generalize the concept to general graphs.

Given an undirected graph G and an initial vertex v0, we can go to a random neighboring vertex of it

in each ”step”. This will create the series of steps v0, v1, . . . , vt. This concept is also known as a ”markov

chain”, where we have states and move between them randomly.

Problem: what is the distribution of vt for ”large enough” t? Does it even converge? We will see

under very basic assumptions, this distribution will indeed converge very quickly to the same distribution

- and it won’t even matter from which source v0 vertex we begin! Intuitively reasonable assumptions (for

this convergence) might be:

1. Connected - so we won’t get ”stuck” in one aisle

2. Not bipartite - so we won’t ”ping-pong” between two states and never converge

Claim 1. Our goal is to show that these assumptions are enough for D(vt) to converge (quickly), and it

will converge to 1
2m d⃗ (the normalized degree vector).

Proof. Let D0 be the distribution of v0, which is ev0 (1 in the index of v0 and 0 everywhere else. We could

have also worked with any other distribution). Now, consider the t’s step. A sends a ”1” in a vertex v,

to a ”1” in all of its neighbors. Instead, we want it to send us into a new valid distribution, which we can

achieve by normalizing it with D−1. Now, AD−1 is the transition matrix that will take us a step forward

in time:

Dt = (AD−1)Dt−1

We raise the question: what is the spectrum of AD−1? We noticed last week that this matrix is similar

(in the linear algebra sense) to D− 1
2AD−1D

1
2 = D− 1

2AD− 1
2 and we have defined NG := I −D− 1

2AD− 1
2 .

Denote the eigenvalues of AD−1 by µ1 ≥ µ2 ≥ · · · ≥ µn, and NG’s by λ1 ≤ · · · ≤ λn. Notice that if v is

an eigenvector of some B with eigenvalue λ, then it is also an eigenvector of I −B with eigenvalue 1−λ.

Thus, λi = 1− µi. Last week, we have proven that:

• always λ1 = 0 (implies µ1 = 1)

• λ2 > 0 ⇐⇒ G is connected ( ⇐⇒ µ2 < 1)

Question:

1. Prove µn ≥ −1
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2. Prove µn = −1 ⇐⇒ G is bipartite

Denote by µ∗ := max(|µ2|, |µn|), from this homework question, we know µ∗ ≤ 1 and µ∗ < 1 ⇐⇒ G is

connected and not bipartite. We now claim that if G is connected and not bipartite (µ∗ < 1) then Dt

converges to 1
2m d⃗ (when t → ∞). First, notice that 1

2m d⃗ is an eigenvector of AD−1 with eigenvalue 1 (so

it is a stationary distribution - it does not change when stepping to the next t). Noting Dt = (AD−1)tD0,

we will write D0 = (p1, . . . , pn) in the unitary eigenvector basis {v1, . . . , vn} for our eigenvalues µ1, . . . , µn:

D0 =

n∑
i=1

αivi

Now, what happens after t steps?

Dt =

(AD−1)tD0 =

(AD−1)t (
∑

αivi) =
∑

αi(AD
−1)tvi =∑

αiµ
t
ivi = (µ1 = 1)

α1v1 +
∑n

i=2 αi µt
i︸︷︷︸

|µi|<1

vi

And since |µt
i| ≤ µ∗ < 1 (from our assumption), then µt

i →
t→∞

0 hence the limit must be:

Dt →
t→∞

α1v1

But what is α1v1? We know v1 =
1
2m d⃗ since its the eigenvector for eigenvalue µ1 = 1, and we must have

α1 = 1 because every Dt in the process is a distribution, hence at the limit it must be a distribution as

well (and v0 =
1
2m d⃗ is a distribution already). Therefore,

Dt →
t→∞

1

2m
d⃗

We are also interested in knowing how quickly Dt converges

Claim 2. For any ϵ, we have |Dt − 1
2m d⃗| < ϵ when t = O

(
log(n/ϵ)
1−µ∗

)
Proof. ∣∣∣∣Dt −

1

2m
d⃗

∣∣∣∣ =
∣∣∣∣∣

n∑
i=2

αiµ
t
ivi

∣∣∣∣∣ ≤
n∑

i=2

|αiµ
t
ivi| ≤ (µ∗)t

n∑
i=2

|αi| · |vi| ≤ (µ∗)t
n∑

i=2

n ≤ n2(µ∗)t

Its enough to require n2(µ∗)t < ϵ, which happens when t = Θ
(
log(n/ϵ)
1−µ∗

)
because (µ∗)

1
1−µ∗ ≈ 1

e

Observation 3. In the above proof, 1 − µ∗ is the spectral gap. As a reminder to the first lecture on

expanders, we saw that the diameter of a φ-expander is at most O
(
logn
φ

)
. Now we have proved something
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stronger: after a similar number of random steps, we are already in a ”uniform (up to degree) random

vertex” in the graph.

Therefore, in an expander graph, a random walk of logarithmic length will end in a random vertex

Observation 4. What have we seen? We saw that if we start from some initial distribution D0 and look

at (AD−1)D0 then we converge to v1 - the eigenvector with the largest eigenvalue. Additionally, we have

seen last week that from v2 (the second largest eigenvector) we can get an approximation to the sparsest

cut in O(m + n log n). Is it possible to approximate v2 just as we did with v1? Consider what happens

when α1 = 0 but α2 ̸= 0. In that case, the algorithm above would converge to v2 (faster than the rest of

the elements). But how can we find an initial vector with α1 = 0? Choose an initial vector v ⊥ d⃗ since

v1 =
1
2m d⃗. To also get α2 ̸= 0 its enough to choose a random v ⊥ d⃗ and with very high probability α2 ̸= 0

Sketch 5. We can build an algorithm in time Õ(m) to approximate the sparsest-cut problem:

1. Calculate NG = I −D− 1
2AD

1
2 (takes O(m))

2. Randomly select a nonzero v with v ⊥ d⃗ (takes O(n))

3. Calculate v′ := (AD−1)tv for t = O(log n
ϵ ) (takes O(t ·m)), we can expect v′ to be an approximation

of v2 (actually, the only thing we need is just vtNv
vtv )

4. On v′, run the algorithm from last week that in time O(m+n log n) checks all the cuts that correspond

to the coordinate ordering, and returns the best one it finds

We got an algorithm in time O(m log n
ϵ ) that returns a

√
2(φ+ ϵ)-approximation for sparsest cut

we won’t see: Its also possible in φ log n rather than
√
φ, and it is also possible to find the approximate

balanced cut. Question: Complete the details (the above algorithm was just a sketch).

Observation 6. Its possible to use random walks and what we have seen using expanders to obtain

samples from very complex distributions.

Example 7. We know that a graph G with maximal degree δ is δ + 1 colorable. How is it possible to

uniformly select a valid 2δ coloring for G?

To do so, we will define a ”Markov chain” / random walk on the valid colorings that starts from some

valid initial coloring, and iteratively chooses a vertex randomly and chooses a new valid coloring for this

vertex.

Consider the graph defined by all valid colorings, where two are connected if they are different only

in a single vertex. Its enough to prove that this graph is an expander to complete the proof (we will not

prove it here).

Observation 8. What happens for our random walks if we consider directed graphs instead of undirected

graphs? In directed graphs, if the stationary distribution (the distribution we converge towards) exists,

then it is not necessarily ”constant” for all graphs. Instead, this distribution tells us more information

about the graph and roughly approximates the ”importance” of the vertices in the graph.
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