
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) 24/3, 2025

Lecture 2: Randomized Pattern Finding And Theta Graphs

Instructor:Or Zamir Scribes: Sacha Hallermeier

1 Introduction

Today, we explore efficient randomized algorithms for pattern finding in graphs. We begin by addressing

the problem of detecting a cycle of length four (C4) within a given graph.

2 Finding a C4 Subgraph

The goal is to efficiently determine whether a given graph contains a C4 subgraph.

Claim 1. If m ≥ 100 · n1.5, then we can find a C4 in expected O(m) time.

Lemma 2. Given an edge, we can determine in O(m) time whether it is part of a C4.

Proof. We iterate over all other edges to check if they form a cycle of length four together with the given

edge.

Lemma 3. In a graph with m ≥ 100 · n1.5, at least 99% of the edges belong to some C4.

Proof. Let E′ be the set of edges in E that do not belong to any C4. The subgraph (V,E′) contains no C4.

By a theorem from the previous lecture, ex(C4, n) ≤ n1.5, implying |E′| ≤ n1.5. Given that m ≥ 100 ·n1.5,

it follows that |E′| ≤ |E|/100, meaning at most 1% of the edges are outside a C4.

Proof of Theorem. We design the following algorithm:

1. Uniformly at random, select an edge.

2. Check in O(m) time whether it belongs to a C4.

3. If not, repeat until a C4 is found.

Since at least 99% of the edges belong to a C4, the number of iterations follows a geometric distribution

with success probability p = 0.01. The expected number of iterations is 100 = O(1), leading to an overall

expected runtime of O(m).

Claim 4. A C4 subgraph can be found in time O(m4/3) if one exists in the graph.

Algorithm. Following the method from the previous lecture:

1. Iteratively remove all vertices with degree ≤ 100 ·m1/3 in linear time. Let n′ and m′ be the new

number of nodes and edges.

1

2. If the remaining graph is nonempty with minimum degree at least 100 ·m1/3, then:

m′ ≥ 1

2
n′ ·m1/3

≥ 1

2
n′ ·m′1/3

which implies m′ ≥
(
100n
2

)4/3
. Using Theorem 1, a C4 can be found in linear time.

3. Otherwise, we remove all edges, leaving an empty graph. We analyze the removal process:

• Each time a vertex v is removed, its edges are redirected to remaining nodes, forming a directed

graph.

• The out-degree satisfies degout(v) ≤ 100 ·m1/3.

• Iterate over all edges (u, v), considering edges directed outward from u and v.

• Store these edge pairs in a hash map. A collision indicates two paths between the same pair

of nodes, forming a C4.

Since the out-degree is bounded, the number of pairs examined is at most m ·100 ·m1/3 = O(m4/3),

leading to the desired complexity.

3 Finding Paths and Cycles

We now seek to find Pk and Ck for general k in a graph. Note that when running a randomized algorithm

with a chance of success p, we can run it t/p times to obtain a failure probability of (1− p)t/p ≤ e−t.

Claim 5. Given a graph and a node v, we can determine whether there is a Pk starting from v with high

probability in time O(k! ·m).

Proof. We assign a random order to all vertices, except for v, which we place first. We then direct each

edge from the smaller to the larger vertex according to this order. The resulting graph is a DAG, and the

assigned order forms a topological sort. Using dynamic programming, we can determine in linear time

the length of the longest path, and thereby check if a path of length k exists.

To analyze the probability of success, consider a specific Pk starting at v. We detect it if its order

is preserved in our random order of vertices. By symmetry, the probability of this occurring is 1/k!.

Repeating the process 100·k! times results in a failure probability of at most e−100, which is negligible.

Note: Using this technique, we could search for a general Pk by adding a node s with an edge to all

other nodes and searching for Pk+1 starting from s.

3.1 Finding Paths of Length at Least k

Question: What if we want to determine, for each u ̸= v, whether there is a path of length ≥ k from v

to u?

2

We can use the same dynamic programming algorithm, but repeat it 100 · log n ·k! times. This results

in a failure probability of 1/100n for each node. By the union bound, the probability of any error is at

most 1/100.

Question: Can we determine for each node whether there is a path of exactly length k leading to it?

Yes, we extend our dynamic programming algorithm by defining dp[i][j] to be 1 if there exists a path

of length j from v to node i. To compute dp[i][j], we check dp[u′][j−1] for each node u′ with an incoming

edge to i.

3.2 Finding Cycles of Length k

Claim 6. We can find a Ck in a graph in time O(k! · k · nm).

Proof. We run the previous algorithm for each node v to find Pk−1. Then, for each neighbor of v, we

check if there is a Pk−1 leading to it. Since the path is simple, it does not use the edge between these

nodes (otherwise, it would only be P1), so joining them creates a Ck.

Claim 7. We can find either a Ck or Pk in time O(k! · log k · nω) by using matrix multiplication instead

of dynamic programming.

Proof. We can use matrix multiplication instead of dynamic programming when counting paths in the

DAG by raising the adjacency matrix to the power of k.

4 Color Coding Technique

[Alon, Yuster, and Zwick (1995)]

In the previous algorithm, the complexity was inO(k!). We seek to improve it from factorial to exponential

in k, achieving a complexity of 2O(k).

The technique is as follows: instead of directing edges, we will color the nodes with k random colors.

We define a colorful path as a path where each color appears exactly once.

We should note two properties of colorful paths:

1. They are simple (repeating a node would mean repeating a color). 2. What is the probability that

any given Pk−1 becomes colorful? By counting, we see that the number of valid colorings of it (where

each node receives a unique color) is k!, while the total number of ways to assign k colors to k nodes is

kk. Thus, the probability is:
k!

kk
≈

√
2πk(k/e)k

kk
=

√
2πk

ek
,

where we used Stirling’s approximation to justify the correctness of this estimate. This probability is

approximately exponential in 1/k.

Claim 8. We can find, in O(2kkm) time, for each node, all the lengths of colorful paths starting from v

with length ≤ k.

Proof. We solve this with dynamic programming. Define dp[i][S] to be 1 if there is a path from v to i

with exactly the colors in the set S appearing in it.

3

We iterate over smaller subsets first, then for each subset, iterate over all nodes u. For each color c

and neighbor u′ of u, we update:

dp[u][S] = 1 if dp[u′][S \ {c}] = 1.

This ensures we only consider paths that respect the coloring constraints.

Following the same approach as before, we can find a Ck in O(2O(k)mn).

4.1 Matrix Multiplication Approach

Can we improve the complexity to O(2O(k)nω)?

Algorithm: We define the matrix Ai as the adjacency matrix restricted to edges that start at color

i and do not end at color i. We also define Ri to be a matrix where rows corresponding to nodes of color

i are filled with ones, and the rest are zero.

By definition, the product:

(R1A2 . . . Ak)i,j

counts the number of paths from i to j that pass through colors 1, 2, . . . , k exactly in that order.

Since we seek to detect any Pk, we want to compute:∑
σ

Rσ(1)Aσ(2) . . . Aσ(k),

where the sum is taken over all permutations σ of {1, 2, . . . , k}. However, directly computing this sum is

infeasible due to the k! permutations.

To circumvent this, we reorder the summation: we first sum over Ri, then sum over all permutations

excluding i:
k∑

i=1

Ri ·
∑

σ∈[k]\{i}

Aσ(1)Aσ(2) . . . Aσ(k−1).

Claim 9. We can compute: ∑
σ∈[k−1]

Aσ(1)Aσ(2) . . . Aσ(k−1)

in O(2knω) time.

Proof. We use dynamic programming on subsets. Define:

dp[S] =
∑
σ∈S

Aσ(1)Aσ(2) . . . Aσ(|S|).

Our goal is to compute dp[[k]].

Using the same reordering trick as before, we obtain the recurrence:

dp[S] =
∑
j∈S

Aj · dp[S \ {j}].

We compute this from smaller to larger sets. There are 2k−1 subsets, and each requires k matrix multi-

4

plications, leading to a total time complexity of:

O(2k−1knω) = O(2knω).

4.2 Results in Pattern Finding

Using these techniques, we obtain the following results:

• Finding C3: min(nω,m2ω/(1+ω)).

• Finding C4: min(n2,m4/3).

Note: In both cases, if ω = 2, we get O(n2) complexity.

Theorem 10. For each k, we can find C2k in O(2O(k)n2) time.

Proof. Follows from previous results on color-coding and matrix multiplication.

Theorem 11. For each k, we can find C2k+1 in O(2O(k)nω) time.

Proof. This follows from the claim on subset DP and matrix multiplication.

5 Theta Graphs

5.1 Definition

A theta-graph is a graph obtained from two cycles sharing a single edge. A theta-graph has a girth greater

than t if both the cycles that form it have a length greater than t.

5.2 Theorem and Proof

Theorem 12. If a graph has m ≥ 2tn, then there is a subgraph of girth greater than t, and we can find

it in O(m) time.

Proof. As we have proved in Lecture 1, there is a subgraph with minimal degree of at least 2t, and we

know how to find it in linear time.

We shall now find a maximal (cannot be extended) simple path in the subgraph, which can be done

in linear time by taking the current path and extending it until we cannot extend it further in both

directions. Let this path be denoted as P = (v1, . . . , vk). We can notice that all the neighbors of v1 are

on the path; otherwise, it could be extended. Let us take the first 2t neighbors of v1 on the path (since

the minimal degree is at least 2t) at indices i1 < i2 < · · · < i2t.

Now, we consider the path from v1 to vit and from vit to vi2t in P . We can close the first one into a

cycle of length t with the edge e1 = (v1, vit). Similarly, we can close the second with the same edge and

the edge e2 = (v1, vi2t). Since vit and vi2t are at a distance of t, we obtain two cycles of length greater

than t with one common edge (v1, vit).

5

5.3 Periodic Coloring

Definition 13. Given a graph and a coloring of its vertices, we say that the coloring is t-periodic if for

each Pt, its two endpoints have the same color.

5.4 Examples

Figure 1: A 2-periodic coloring of a P5 graph

Figure 2: A 3-periodic coloring of a C6 graph

5.5 Claims and Proofs

Claim 14. For a cycle Cl and a coloring of the vertices, the smallest t∗ such that the coloring is t∗-periodic

divides l.

Proof. Let t∗ < l be the smallest period of the coloring. We note l = ⌊l/t∗⌋ · t∗ + (l mod t∗). We want

to show that l mod t∗ = 0.

Assume by contradiction that l mod t∗ ≥ 1. Consider two vertices at a distance of l mod t∗. The

short path between them has a length of l mod t∗, but going around the other side of the cycle gives a

6

path of length l−(l mod t∗) = ⌊l/t∗⌋·t∗. Since the coloring is t∗-periodic, it is also ⌊l/t∗⌋·t∗-periodic, and
so the two vertices must have the same color. This means the graph is (l mod t∗)-periodic, contradicting

the assumption that t∗ is the smallest period.

Claim 15. For a theta-graph with girth > t and a coloring of its vertices that is t-periodic, if one of its

three cycles is t∗-periodic for some t∗ ≤ t, then all its cycles are t∗-periodic.

Proof. For any two vertices on a cycle at distance t, we can find paths of length a · t that start at these
vertices and end in the t∗-periodic cycle. Since these paths end at vertices of distance t, they must have

the same color. Furthermore, since the original two vertices are connected by paths of length a · t and
the graph is t-periodic, they must also have the same color.

Figure 3: Illustration of jumps of size t keeping a distance of t* in a theta-graph.

5.6 Conclusion

Claim 16. For a theta-graph with girth > t and a coloring of its vertices that is t-periodic, the smallest

period is at most 2.

Proof. Every period t∗ is a period of all three cycles. Let the lengths of the two cycles that form the

graph be l1 and l2. The total cycle length is l1+ l2−2 (not counting the middle edge twice). Since t∗ | l1,
t∗ | l2, and t∗ | (l1 + l2 − 2), it follows that:

t∗ | (l1 + l2 − (l1 + l2 − 2)) = 2

Thus, since t∗ | 2, we conclude that t∗ ≤ 2.

7

References

[1] Noga Alon, Raphael Yuster, and Uri Zwick. “Color-coding”. In: J. ACM 42.4 (July 1995), pp. 844–

856. issn: 0004-5411. doi: 10.1145/210332.210337. url: https://doi.org/10.1145/210332.

210337.

8

https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337

	Introduction
	Finding a C4 Subgraph
	Finding Paths and Cycles
	Finding Paths of Length at Least k
	Finding Cycles of Length k

	Color Coding Technique
	Matrix Multiplication Approach
	Results in Pattern Finding

	Theta Graphs
	Definition
	Theorem and Proof
	Periodic Coloring
	Examples
	Claims and Proofs
	Conclusion

