
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) May 12, 2025

Lecture 7: Inclusion–Exclusion Principle in Algorithm

Instructor:Or Zamir Scribes:Noam Licht

1 Introduction

Today’s lecture is about the applications of the inclusion-exclusion principle in algorithm. In particular,

we will see some NP-complete problems, and show how to improve the best known algorithms using this

basic yet powerful principle.

2 Finding Hamiltonian Path

Hamiltonian path is a path that visits each vertex of the graph exactly once.

It is known to be NP-complete.

Algorithm 1. Naive solution: go over every order of the vertexes and check if it is a valid path - takes

O∗(n!) time1.

But we already solved a similar problem when we dealt with color-coding - finding a path with visit

every color exactly once. We solved in O∗(2k) time, so in ours case where k = n we get a solution in

O(2n) time. For completeness we will describe the solution again:

Algorithm 2.

We will solve with dynamic programming. For each v ∈ V, V ′ ⊆ V , let

dp(v, V ′) = Is there a path which visits every vertex of V ′ exactly once (and only them), and ends in v

then

dp(v, V ′) =
∧
u∈V ′

(u,v)∈E

[dp(u, V ′\{v})]

Thus we can compute the whole table in O∗(2n) time.

Issue 3. We used O∗(2n) space. We would like to use less space.

Can we solve this in O∗(2n) but with polynomial space?

Reminder 4. Inclusion-Exclusion Principle

1The symbol O∗(T ) is O(T · nc) for some c, meaning up to polynomial factor
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Let A1, A2 . . . Ak ⊆ B. Then the principle states that:

Union:

∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣ = ∑
Ø ̸=I⊆[k]

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Intersection:

∣∣∣∣∣
k⋂

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[k]

(−1)|I|

∣∣∣∣∣⋂
i∈I

Ac
i

∣∣∣∣∣ = ∑
I⊆[k]

(−1)|I|

∣∣∣∣∣B\
⋃
i∈I

Ai

∣∣∣∣∣
Proof. (of the union case, the intersection case is similar)

Let x ∈ B and a set I ⊆ [k]. When does the coefficient of x will be:

• 0? x ̸∈
⋂

i∈I Ai, meaning there exists i ∈ I such that x ̸∈ Ai

• +1? x ∈
⋂

i∈I Ai and |I| is odd

• −1? x ∈
⋂

i∈I Ai and |I| is even

Note as J the set of indices of groups Ai which contains x. Meaning we get 0 coefficient if I ̸⊆ J , and

otherwise −1|I|+1

Lemma 5. Let J be a non-empty set. Then the number of subsets of J of even size is equal to the number

of subsets of odd size.

Proof. Take some i ∈ J . We create a pairing of 2J in which every subset I ⊆ J\{i} is paired to the

subset I ∪ {i}. It is a valid pairing and each pair contains one even and one odd subset.

We will finish the proof. In the case x ∈
⋃
Ai → J ̸= Ø, we got that the sum over all I is:∑

Ø ̸=I⊆J

−1|I|+1 = 0− (−1|Ø|+1) = 1

In the case x ̸∈
⋃
Ai → J = Ø, we got that the sum over all I is:∑

Ø̸=I⊆J

−1|I|+1 = 0

Reminder 6. We know how to compute the number of paths (not necessarily simple) of length k between

every 2 vertex in polynomial time

Observation 7. The number of Hamiltonian paths is equal to the number of length n paths that visit

every vertex

Note as B the set of all length n paths in the graph. Note as Av the set of length n paths which visits

v. From the observation it is sufficient to know wether
∣∣⋂

v∈V Av

∣∣ > 0. From the inclusion-exclusion

principle:
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∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
V ′⊆V

(−1)|V
′| ·

∣∣∣∣∣ ⋂
v∈V ′

Ac
v

∣∣∣∣∣
Let us look at

⋂
v∈V ′ Ac

v - it is the set of length n paths which does not visit any vertex of V ′. In other

words, it is the set of length n paths in the graph G[V \V ′]. Thus, the size of this set can be computed

in polynomial time.

To sum up, in order to compute the number of Hamiltonian paths in our graph, it is sufficient to

compute a sum with 2n elements - each can be computed in polynomial time (and space).

Conclusion 8. The number of Hamiltonian paths in a graph can be computed in O∗(2n) time and

polynomial space.

3 Set partitioning via Inclusion–Exclusion (Björklund, Husfeldt, Koivisto [1])

Problem 9. Set Partition/Cover Problems

Given a set V (of size n) and a family F of subsets of V , there are a few interesting questions:

• Can we partition V into k subsets from F ?

• Can we cover V with k subsets from F ?

• How many [covers/partitions] there are of V with k subsets from F ?

• Weighted Case (every subset from F has a weight): What is the [sum of all/max value of] the

[covers/partitions] of V with k subsets from F ?

Observation 10. Graph G is k-colorable ⇐⇒ V can be covered by k sets from the family independent set of G

How fast can we check if G is k-colorable?

Algorithm 11. Naive: O∗(kn)

Exercise 12. Solve in O∗(3n) time (using the observation and dynamic programming)

Our goal is to solve all the set-partition problems in O∗(2n) time (for general F it is the best we can

hope for as it is the size of the input).

We might think of F as a function f : 2V → {0, 1}

Definition 13. Zeta Transform [2]

Given a function f : 2V → {0, 1} define f̂ : 2V → {0, 1} as follow:

f̂(U) =
∑
U ′⊆U

f(U ′)

How to compute it?

Algorithm 14. Naive: Just compute it by definition
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To compute the whole function it will take

∑
U⊆V

∑
U ′⊆U

1 =

n∑
i=0

(
n

i

)
2i =

n∑
i=0

(
n

i

)
2i1n−i = (2 + 1)n = 3n

The first equality follows from grouping together every |U | = i. The third equality is the binomial

theorem.

Algorithm 15. f̂ can be computed in O∗(2n) time (Yates [3])

We will maintain a series of functions f = f0, f1 . . . fn−1, fn = f̂ . For every i ∈ [n], U ⊆ V \{vi}: 2

fi(U) = fi−1(U)

fi(U ∪ {vi}) = fi−1(U ∪ {vi}) + fi−1(U)

Claim 16. (by induction over i) fi(U) sums f over all the subsets of U whose {vi+1 . . . vn} part is the

same as in U

Meaning that indeed fn = f̂ . Overall the algorithm took O(n2n) = O∗(2n) time (and space).

Theorem 17. We can compute the number of k-covers of V in O∗(2n) time

Proof. Note as B the set of all k-tuples of sets from F .

Cover of size k ⇐⇒ such k-tuple in which every element of V is in at least one of the subsets.

Note as Av ⊆ B, all the k-tuples in which v appear at least in one of the sets.

Thus the problem is to count
∣∣⋂

v∈V Av

∣∣. Again from the inclusion-exclusion principle:∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
V ′⊆V

(−1)|V
′| ·

∣∣∣∣∣ ⋂
v∈V ′

Ac
v

∣∣∣∣∣
But what is

⋂
v∈V ′ Ac

v ? It is the set of all k-tuples which does not contain any element from V ′. In

other words, every subset in the k-tuple does not contain any element from V ′.

We claim that
∣∣⋂

v∈V ′ Ac
v

∣∣ = f̂(V \V ′)k. Because every element in the k-tuple can be every element of

F which is also a subset of V \V ′, which is exactly denoted as f̂(V \V ′).

Thus we finished our proof, as we can compute f̂ in O∗(2n) time, and then compute the final sum in

O∗(2n) time as well.

We only solved covers, not partitioning. Define fi(U) = f(U) · 1|U |=i. And notice that f̂i(U) note the

number of subset of U of size exactly i.

Observation 18. A cover is also a partition ⇐⇒ The sum of the subsets sizes is n

Conclusion 19. Define B and Av as such k-tuple like before, but with sum of sizes equal to n. Then the

number of partitions is:

2vi notes the i’th element in V
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∣∣∣∣∣ ⋂
v∈V

Av

∣∣∣∣∣ = ∑
V ′⊆V

(−1)|V
′| ·

∣∣∣∣∣ ⋂
v∈V ′

Ac
v

∣∣∣∣∣
=

∑
V ′⊆V

(−1)|V
′|

∑
i1+i2+...ik=n

k∏
j=1

f̂ij (V \V ′)

Because now
⋂

v∈V ′ Ac
v means we have to choose a k-tuple with sum of sizes n.

Thus it is sufficient to compute
∑

i1+i2+...ik=n

∏k
j=1 f̂ij (V \V ′) for every V ′. We will compute this

value using dynamic programming. Define the solution with parameters n′, k′ as dp(n′, k′). Thus

dp(n, k) =
∑

i1+i2+...ik=n

k∏
j=1

f̂ij (V \V ′)

=

n∑
ik=0

f̂ik(V \V ′) ·

 ∑
i1+i2+...ik−1=n−ik

k−1∏
j=1

f̂ij (V \V ′)


=

n∑
ik=0

f̂ik(V \V ′) · dp(n− ik, k − 1)

Thus given f̂ we can compute the entire dp table in O(n2k) time, and dp(n, k) is the value we needed.

Summing up we can compute the number of partition of size k in O∗(2n) time.

Exercise 20.

• Show how to count the number of [covers/partitions] if instead of F there are k families of sets

F1,F2 . . .Fk, and a [cover/partition] takes one set from every family.

• Show how to sum the weight of all [covers/partitions]. Meaning instead of f , we have w which is a

general function (not only to {0, 1}), and the weight of a [cover/partition] is
∏k

i=0w(vi).

Note 21. All the algorithm we presented works with really big numbers (≈ 2nk). But it is fine because

the length of there representation is O(nk) and arithmetic operation are polynomial in the length of the

representation - yielding O∗(1)

Claim 22. Reduction: Algorithm which computes the sum of weights of [covers/partitions] → Algorithm

which computes the maximum weight of a [cover/partition] (of a somewhat limited function w)

Proof. Assume that w takes only integer values. Define M as the maximum absolute value w takes over

2V . We will take a very large β, and define a new function w′(u) = βw(u). We run the sum-algorithm on

w′, and we gets ∑
V1,...Vk

covers/partitions

k∏
i=1

w′(Vi) =
∑

V1,...Vk
covers/partitions

β
∑k

i=1 w(Vi)

We take β > (2n)k (which is the maximum number of [covers/partitions]). Meaning this number in

base β tells us exactly how many [covers/partitions] there are in any weight - so we could easily find the

maximum [cover/partition] weight.
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Note that in w′ the maximum weight is βM = 2nkM , which means that this reduction works only for

polynomial M (in order to keep the representation length of the numbers polynomial).

4 Summery

We solved all variants of the set partition/cover problem, which generalizes many known problems. A

partial list of such problems we now can solve:

• Computing χ

• Computing the number of k-coloring

• Checking if a graph is colorable if every node have a list of possible colors

• max k-CUT: partition of V into k groups with maximal sum of edges weights between the groups

What about memory? The computation of f̂ took O(2n) memory

Open: Is it possible to compute χ in O∗(2n) time and polynomial memory?

In general, there are problems in which we can efficiently compute f̂ without computing all the values

beforehand - which yields the desired solution.
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für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:340–368, 1964.

[3] F. Yates. The Design and Analysis of Factorial Experiments. Imperial Bureau of Soil Science, Harp-

enden, 1937. Technical Communication No. 35.

6


