
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) May 26, 2025

Lecture 9: Explicit Expanders, Expander Decomposition, and Fast Min-Cuts

Instructor:Or Zamir Scribes:Nir Finkelstein

Reminder from Last Class

• We saw different definitions for expander graphs.

• We looked at their basic properties.

• We showed their existence (by probabilistic construction).

• We saw how to use them to construct error-correcting codes with fast error correction.

In This Class We Will See

• Explicit constructions of expander graphs.

• We will give an example of an expander application that requires an explicit construction.

• We will discuss expander decomposition.

Different Options for Explicit Construction

1. We have already seen an algorithm that runs in polynomial time and returns an expander graph

with high probability. We can use this as a basis to create an algorithm with no probability of

error, whose expected runtime is polynomial. This would require us to be able to check if a graph

is an expander in polynomial time.

2. Deterministic construction - an algorithm with no probabilistic elements.

3. Strongly explicit construction - a very fast algorithm (polynomial in log n) that receives the

index of a node and returns the indices of its neighbors. (This is possible because each node has a

constant number of neighbors, and its index can be represented using log(n) bits).

Building Strongly Explicit Expanders

We will focus on the third option: building strongly explicit expanders.

One way to construct such expanders comes from group theory, specifically from Cayley graphs. Given

a group H and a subset S ⊆ H (usually a set of generators), we can define a graph where the nodes are

the elements of the group. Any two nodes u, v ∈ H are connected if u · s = v for some s ∈ S.

For example, we can obtain a cycle graph of length n (Cn) by using Zn (the cyclic group of size n)
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where S = {+1,−1}. This is an explicit construction because, given an element, it is easy to identify

its neighbors simply by multiplying by elements of S. As an example (without proof) of a Cayley graph

(Not exactly Cayley) that is an expander [4]: Consider the group H = Fp, and for each element a ∈ H,

choose its neighbors to be a+ 1, a− 1, a−1. It turns out that this graph is an expander.

Expander Applications: Derandomization

Now we will move on to a classic application of expanders in computer science:

derandomization - reducing or eliminating randomness.

Consider a randomized algorithm A that flips r coins and has one-sided error (can be wrong when

saying ”no”) with an error probability of δ. We want to reduce δ. We can usually do this by running the

algorithm k times, which yields:

• Runtime increases by a factor of k.

• Error probability reduces to δk.

• Randomness increases by a factor of k (requires r · k coin flips).

We want to proceed in a way that minimizes randomness. Therefore, we will prove the following lemma.

Lemma. In this setting, using an explicit expander, we can reduce the error to O( δk ), the runtime will

increase by a factor of k, and the amount of randomness will remain the same (using r coin flips).

Proof. Let’s take an explicit expander graph with 2 ·2r nodes, as defined last week. It’s a bipartite graph

where the degree of each node in L is d, and the number of nodes on each side is |L| = |R| = 2r. For any

S ⊆ L such that |S| < γ · |L|, it holds that |N(S)| ≥ (1− ϵ) · d · |S|.
Each node in the expander represents a choice for all r coin flips. Assume the expander is explicit and

δ = 0.05, ϵ = 0.1.

We define the algorithm as follows: Randomly choose one node in L and run the algorithm A on all of

its neighbors.

Why does this work? Let B ⊆ L be the set of all ”bad” choices from L. That is, B contains nodes whose

neighbors are all ”bad” choices for the r coin flips (meaning the algorithm A would err for all of them).

Assume for contradiction that |B| ≥ 0.1 · |L|
d . Let B′ ⊆ B be a subset of exactly this size. Because the

graph is an expander, N(B′) has at least: |B′| · d · 0.9 neighbors (assuming ϵ = 0.1).

This quantity is greater than δ · |R|, which leads to a contradiction.

Therefore, the probability of choosing a ”bad” initial node from L is reduced. This means the error prob-

ability is reduced by a factor of d, since |B| = O( |L|d ). This method effectively reduces derandomization

because now, to choose a vertex in L, one only needs to flip r coins, which is equivalent to selecting a

value within the range of 2r.

The runtime will be: dT (n) + poly(r), where:

• T (n) is the runtime of the original algorithm.

• poly(r) accounts for the time to obtain neighbors: A vertex can be represented with r bits, and by

the assumption of a strongly explicit expander, all its neighbors can be obtained in time polynomial

in its representation size (i.e., polynomial in r).
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Algorithmic Problems on Expanders

Many algorithmic problems become easier if the input graph is an expander. Two examples we discussed

that can be solved in sub-linear time are:

• Checking graph connectivity after deletions.

• Finding the shortest path between two nodes.

Now we will see another example: finding a MinCut.

Theorem 1. Let G be a graph with minimum degree δ(G) which is also a 2
δ(G) -expander. Then its MinCut

can be found in O(n) time, and all its MinCuts correspond to separating a single vertex from the rest of

the graph.

Proof. Let’s start by showing that there is no MinCut (C, V \ C) (where |C| ≤ |V \ C|) such that

|C| ≥ δ(G)/2. For such a cut (C, V \ C), we know that on one hand: |E(C, V \ C)| ≤ δ(G) (because the

minimum cut must be at most the minimum degree of a vertex). On the other hand, as we saw in the

previous class, for an expander graph, it holds that: |E(C, V \C)| ≥ φ · V ol(C) where ϕ is the expansion

constant.

In the current setting, we have φ = 2/δ(G). So, φ · V ol(C) ≥ φ · |C| · δ(G) = 2
δ(G) · |C| · δ(G) = 2|C|.

Thus, combining these inequalities, we get: 2|C| ≤ |E(C, V \ C)| ≤ δ(G) Which implies: |C| ≤ δ(G)
2 .

Now, let’s assume for contradiction that 2 ≤ |C| ≤ δ(G)
2 . For any vertex in C, its degree is at least

δ(G). Since |C| ≤ δ(G)
2 , at most δ(G)

2 − 1 edges from any vertex in C can connect to other vertices within

C. Therefore, for any vertex in C, at least δ(G)
2 + 1 of its edges must connect to vertices in V \ C.

This means that even if |C| = 2, there are more than δ(G) edges connecting C to V \ C.

Beyond the examples we’ll see, the use of expanders has become incredibly useful in recent years for many

problems related to various types of connectivity issues, as well as in static, dynamic, and distributed

algorithms.

Expander Decomposition

We want to transform a general graph into a type of expander.

Definition 2. Given a graph G and a parameter φ, we say that a partition: V = V1 ⊔ V2 ⊔ · · · ⊔ Vk is a

(φ,m′)-expander decomposition if the following conditions hold:

1. For every i, the graph G[Vi] (the subgraph induced by G on Vi) is a φ-expander.

2. The number of edges in G connecting different components is at most m′.

Theorem 3. For any graph G and any φ, an expander decomposition exists: (φ,m′) for m′ = O(φ ·m ·
logm).

Note: This decomposition is useful when φ ≪ 1
logm .

We’ll start by showing its existence and then focus on the runtime for finding the expander decomposition.
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Proof. (by algorithm) Given G and φ:

• If G is a φ-expander, return V .

• Otherwise, there exists a cut (S, V \ S) such that ϕ(S) < φ (its conductance is less than φ). Run

the algorithm recursively on G[S] and G[V \ S] with the parameter φ , and combine the partitions

returned.

It’s clear that each component returned is a φ-expander since this was the only stopping condition.

Therefore, we still need to show that the number of edges between components is less than O(φ·m·logm).

We’ll use an amortization argument. Every time we partition the graph, we’ll take the component

with the smaller volume (W.L.O.G., S) and distribute the cost of its cut edges E(S, V \ S) such that

each vertex v ∈ S pays φ · deg(v).
Let’s calculate how much each vertex pays throughout the process. Every time a vertex v pays φ ·deg(v),
the volume of its component (the one it’s currently in) is at least halved. Since the initial maximum

volume is 2m (sum of all degrees) and the smallest possible volume for a component is at least 1 (for a

single vertex with at least degree 1), a vertex can be part of such a ”payment event” at most log(2m)

times. Therefore, each vertex v pays at most φ · deg(v) · log(2m) in total. Summing over all vertices, the

total payment is at most: ∑
v∈V

φ · deg(v) · log(2m) = φ · 2m · log(2m)

Runtime Concerns

Two potential issues could adversely affect the runtime:

1. It’s unclear how to efficiently check if a graph is a φ-expander or how to find a sparse cut.

2. The cut might be unbalanced, leading to a quadratic runtime for the recursive calls.

The first issue is less concerning, as we can tolerate an approximation to the solution within a factor

of polylog(n). To address the second problem, instead of taking just any cut (S, V \ S) that satisfies

ϕ(S) < φ, we will take the cut where |S| is the largest among all cuts satisfying the condition, where |S|
denotes the smaller of the two sets |S| and |V \ S|

Claim 4. If φ is the conductance of G and we take the most balanced cut, then the volume will decrease

by at least a constant factor every two iterations.

Proof. Assume (S1, V \ S1) is the largest cut with conductance less than φ, meaning that |S1|, which
is at most |V \ S1|, is maximal among all such cuts. Then, assume S2 is the largest cut in G[V \ S1]

with conductance less than φ. Suppose, for contradiction, that Vol(S1) + Vol(S2) < 1
2 · V ol(V ). Then

S1 ∪ S2 would form a cut larger than S1 with conductance less than φ, contradicting the maximality of

S1. Therefore, 1
2 · V ol(V ) ≤ V ol(S1) + V ol(S2). Specifically, either S1 satisfies 1

4 · V ol(V ) < V ol(S1) <
1
2 ·V ol(V ), or S1∪S2 satisfies

1
4 ·V ol(V ) < V ol(S1∪S2) <

3
4 ·V ol(V ). In either case, within two iterations,

we successfully divided the graph into two or more parts that are smaller by at least a constant factor

(14).
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The issue, however, is that in this proof, we didn’t account for finding an approximate cut. In practice,

to efficiently find the sparsest balanced cut, we typically need to find an approximation in two senses:

1. We find a cut whose conductance is at most c1 · φ.

2. We find a set S that is at least 1
c2
·|S∗|, where S∗ is the maximum-sized cut satisfying the conductance

condition.

It’s currently known that a fast algorithm exists where c1 = c2 = O(log2 n). How can we make the

algorithm work under the above constraints? We can simply set φ′ = φ
c1 since φ is a parameter we are

free to choose during the algorithm’s execution.

Theorem 5. For every G and every φ, a (φ,φ·m1+o(1))-expander decomposition is computable in m1+o(1)

time. [1]

In the next lecture, we will see an algorithm for finding an approximate balanced cut. Combined with

what we’ve already seen, this will yield a proof of the theorem. However, there might still be a gap: the

algorithm finds an approximation to a balanced cut, rather than to the sparsest balanced cut.

Note. This expander decomposition can be maintained dynamically, even in a distributed computation

setting.

Finding MinCut Using Expander Decomposition

Theorem 6. MinCut can be found in a graph in m1+o(1) time.[3]

Proof Idea:

1. Use expander decomposition on G with φ ≈ 1
δ .

2. Use what we’ve learned about finding MinCut in an expander to find the MinCut for the original

graph G.

Intuition for the Proof: We take the graph G and decompose it into expanders where φ ≈ 100/δ(G).

We’ve already seen that a minimum cut does not cut any expander component in more than one vertex.

Therefore, we can hope that it doesn’t cross them at all. In such a case, we can contract all components

of the expander decomposition and solve MinCut on the remaining graph (including parallel edges).

In the contracted graph, the number of edges is approximately m1+o(1)/δ(G), because the decomposition

algorithm guarantees O(φ ·m · logm) edges between components, and we chose φ = 100/δ(G).

Claim 7. (Gabow 95’) For any graph G, MinCut can be found in time Õ(m · λ(G)), where λ(G) is the

number of edges in the minimum cut. [2]

We won’t prove this claim here. However, in the Algorithms course, we saw a proof of this claim given

that we are provided with source (s) and sink (t) vertices that must be on opposite sides of the cut.

This uses the Ford-Fulkerson algorithm in flow networks, where each iteration takes O(m) time and each

iteration increases the flow (and thus the cut) by one.

Given Gabow’s theorem, the runtime for finding the MinCut on the contracted graph from the previous

part (after contracting the expander components) is:

Õ

((
m1+o(1)

δ(G)

)
· λ(G)

)
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Since λ(G) ≤ δ(G) (the minimum cut is always less than or equal to the minimum degree), this simplifies

to:

Õ

(
m1+o(1) · λ(G)

δ(G)

)
≤ Õ(m1+o(1))

Next, we’ll move to describing the full algorithm that uses expander decomposition and then processes

the expander components (meaning it removes certain vertices from them) so we know for certain that

no MinCut will split any of the resulting components.

Algorithm

1. Run expander decomposition on G with φ = 40
δ(G) . Let the resulting components be V1, . . . , Vk.

2. For each component Vi obtained, perform the following operations:

(a) Trim: For every vertex v ∈ Vi, if degG[Vi](v) ≤ 2
5degG(v), remove v from Vi. Repeat this

operation (re-checking degG[Vi](v) for remaining vertices) until no more vertices satisfy the

condition. Let the resulting component be V ′
i .

(b) Shave: Define V ′′
i ⊆ V ′

i as all vertices v ∈ V ′
i for which 1

2degG(v) + 1 < degG[V ′
i ]
(v). This

means, in a single iteration, we remove all vertices remaining after step 2.1 for which less than

half of their original edges are still within V ′
i .

3. Contract the components V ′′
i .

4. Run Gabow’s algorithm on the contracted graph.

Now, we need to prove the following:

1. No minimum cut separates any V ′′
i (which justifies contracting them).

2. The number of edges passing between the V ′′
i components and the vertices we removed from them

is at most O
(
m1+o(1)

δ(G)

)
.

Proof. (part 1: A Minimum Cut Does Not Cross Any V ′′
i )

We will prove this by showing that for any minimum cut (C, V \C) and for any V ′′
i , one of the following

holds:

|V ′′
i ∩ C| = 0 or |V ′′

i \ C| = 0

On one hand, the number of edges crossing this internal cut is bounded by the minimum cut value:

E(Vi ∩ C, Vi \ C) ≤ λ(G) ≤ δ(G)

On the other hand, since G[Vi] is a φ-expander, its conductance property gives us a lower bound for any

cut within Vi:

E(Vi ∩ C, Vi \ C) ≥ φ ·min(V ol(Vi ∩ C), V ol(Vi \ C))

Without loss of generality, assume V ol(Vi ∩ C) ≤ V ol(Vi \ C). Thus,

V ol(Vi ∩ C) =
∑

v∈Vi∩C
degG(v) ≥ |Vi ∩ C| · δ(G)
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So,

E(Vi ∩ C, Vi \ C) ≥ φ · |Vi ∩ C| · δ(G)

Combining the two inequalities:

φ · |Vi ∩ C| · δ(G) ≤ δ(G)

Substituting φ = 40
δ(G) (as chosen in step 1 of the algorithm):

40

δ(G)
· |Vi ∩ C| ≤ 1

Therefore, |Vi ∩ C| ≤ δ(G)
40

Now we want to show that:

min(|V ′
i ∩ C|, |V ′

i \ C|) ≤ 2

This is true because, again, on one hand:

E(V ′
i ∩ C, V ′

i \ C) ≤ λ(G) ≤ δ(G)

And on the other hand:

E(V ′
i ∩ C, V ′

i \ C) = E(V ′
i ∩ C, V ′

i )− E(V ′
i ∩ C, V ′

i ∩ V ′
i )

Notice that:

E(V ′
i ∩ C, V ′

i ∩ V ′
i ) < |V ′

i ∩ C|2 ≤ |V ′
i ∩ C| · |Vi ∩ C|

And by the definition of Trim:

E(V ′
i ∩ C, V ′

i ) ≤ |V ′
i ∩ C| · 2

5
δ(G)

so we get:

E(V ′
i ∩C, V ′

i \C) ≥ |V ′
i ∩C|2

5
δ(G)−|V ′

i ∩C|2 ≥ |V ′
i ∩C|2

5
δ(G)−|V ′

i ∩C|·|Vi∩C| ≥ |V ′
i ∩C|

(
2

5
δ(G)− δ(G)

40

)
That is:

δ(G) ≥ |V ′
i ∩ C|

(
2

5
δ(G)− δ(G)

40

)
Hence:

|V ′
i ∩ C| ≤ 1

2/5− 1/40
=

8

3

Since |V ′
i ∩ C| is an integer, we obtain: |V ′

i ∩ C| ≤ 2

Next, we need to show that:

min(|V ′′
i ∩ C|, |V ′′

i \ C|) = 0

Assume for contradiction that 0 < |V ′′
i ∩ C| ≤ 2. That is, V ′′

i intersects a MinCut nontrivially. We

know that for any v ∈ V ′′
i ∩ C, the number of edges from v to V ′′

i is greater than 1
2degG(v) + 1. Since

|V ′′
i ∩ C| ≤ 2each such vertex v has at most one neighbor in V ′′

i ∩ C and thus has strictly more than

7



1
2degG(v) edges to V ′′

i \ C. Therefore, moving v to the other side of the cut, V ′′
i \ C, would reduce the

number of crossing edges , which contradicts the minimality of the MinCut.

Next, we prove part 2.

Claim 8. The sum of degrees of vertices removed from components during the Trim and Shave steps is at

most O
(
m1+o(1)

δ(G)

)
, which is also the number of edges that existed between components after the expander

decomposition step.

Proof. Trim Step

For every vertex removed during the Trim step, at least 3
5 of its edges originally connect to vertices

outside its resulting component V ′
i . Therefore, the number of new edges outside the component is at

most 2
5 · degG(v). On the other hand, the decrease in the number of edges exiting Vi outside the cut is at

least 3
5 · degG(v)−

2
5 · degG(v) =

1
5 · degG(v). Thus, in total, the Trim step increases the number of edges

between components by at most 2E(Vi, V \ Vi), meaning the number of new edges between components

increases by at most twice the number of edges that exited each component Vi before the Trim operation.

Summing over all expander components, we conclude that the Trim step adds at most O(m
1+o(1)

δ(G) )

Shave Step

Vertices removed from component V ′
i during this step are only those for which more than half of their

edges previously connected outside the component. Therefore, removing all of them simultaneously costs

no more than the number of edges that crossed the component V ′
i before the operation. Hence, even after

this operation, the number of edges between components remains O
(
m1+o(1)

δ(G)

)
.

In summary, we have shown that after the expander decomposition steps, followed by the Trim and

Shave operations, we can contract the expander components without affecting the minimum cut, thereby

reducing the number of edges by a factor related to the minimum degree. Following these steps, by using

an algorithm for finding MinCut in Õ(m · λ(G)) time, we obtain an algorithm for finding MinCut in

m1+o(1) time.
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