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Lecture 2: Color Coding and Randomized Cycle Finding

Instructor:Or Zamir Scribes:Gal Wiener

1 Introduction

Up to this point, we have discussed deterministic algorithms as well as those that rely on hash tables or

hash sets, whose efficiency often depends on probabilistic assumptions. Today, however, we will explore

probabilistic algorithms that explicitly incorporate randomness.

2 Probabilistic Pattern Detection

Claim 1. If m ≥ n
3
2 , then a C4 can be found in expected O(m) time.

Lemma 2. Given an edge e, we can determine whether it is part of a C4 in O(m) time.

Proof. Denote e = (u, v):

Algorithm 3.

1. Identify the neighbors of u and v, the sets N(u) and N(v).

2. Find common neighbors w1, w2 ∈ N(u) ∩N(v).

3. For each pair of common neighbors (w1, w2), check if (w1, w2) ∈ E.

4. If such an edge exists, then (u,w1), (v, w2), (w1, w2), (u, v) form a C4.

This check can be performed in linear time with respect to the number of edges, m.

Lemma 4. In a graph that satisfies the condition in the claim (m ≥ n
3
2 ), 99% of the edges are part of

some C4.

Proof. Let G = (V,E) be a graph s.t. |E| = n ≥ m
3
2 = |V |

3
2

Algorithm 5.

1. Denote in E′ the set of edges that are not part of any C4.

• Therefore, |E′| ≤ n
3
2 .

2. Sample an edge e uniformly at random and check (in O(m) time) whether it is part of a C4.

3. If it isn’t, repeat steps 1-2 until we find one that is.

In expectation, we find such an edge in O(1) steps.
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3 Revisiting Pattern Detection

With the knowledge and techniques we discussed since being introduced to the problem of finding a C4

in a graph, we can achieve tighter bounds for sparse(r) graphs:

Theorem 6. Given a graph, it’s possible to determine if it contains C4 in O(n
4
3 ) time.1

Proof.

Algorithm 7. We will perform operations on the graph G = (V,E) and a copy of it G′ = (V ′, E′).

• If G′ has a vertex v′ with a deg(v′) ≥ m
1
3 , delete it.

– For each e′i incident to v′ (and therefore deleted from G′), direct its equivalent edge in G,

incident to its equivalent vertex v - ei, from v outwards.

• Repeat until no such vertices are left in G′ (Runs in linear time)

We split into two cases based on the algorithm’s output:

• Option 1: The resulting G′ after the algorithm finishes is not empty:

– It has, then, n′ vertices, m′ edges, and the the degree of any edge is at last m′ 13 .

– Note that

m′ ≥ 1

2
· n′ ·m′ 13 · 100 ≥

m′≤m

100

2
n′(m′)

1
3 (1)

(m′)
2
3 ≥ 1

2
n′ · 100 m′ ≥ (

100

2
n′)

3
2 (2)

– In that case, we can find a C4 in linear time. ✓

• Option 2: All edges in G were directed such that the out-degree of every edge2 is ≥ 100m
1
3

We’ll now use this result to determine if G contains a C4:

Algorithm 8.

1. Initialize an empty set, S, to contain ends of paths of length 2 (P2) in G.

2. For each (u, v) = e ∈ E(G):

– For each edge q = (x, u), (v, y) ∈ E(g) incident to the vertices u, v that e connects, we’ll

construct an (s, t) tuple of its ends. e.g. (x, v), (u, y).

∗ If (s, t) /∈ S, add it to S: S = S ∪ (s, t), Continue.

∗ Otherwise, (s, t) ∈ S, i.e. there’s a collision in the set, then there are two distinct P2s

between two vertices in G, i.e. a C4. Answer ”Yes”.

1Note that if m = n
2
3 , like in the problems from the previous lecture, the bound evaluates to n2

2Also known as the Degeneracy of a graph, in this case the degeneracy of G is ≥ 100m
1
3
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Clearly, if we answered ”Yes”, then we found a C4, but what guarantees that a C4 would be found?

Note that no matter how the edges of a C4 are directed, it can be deconstructed into two distinct

P2-s such that each path has an edge that’s directed outwards from the middle vertex.

Then every C4 would be found.

Runtime: m · 2 · 100m
4
3 = O(m

4
3 )

4 New Goal: Find General Pk, Ck In A Graph

• We will see algorithms that run in T time but with probability of success p (which may be small,

but their success, or lack thereof, can be validated).

• Note that if we perform t
p iterations, then the chances of failure are (1− p)

t
p ≤ e

t
p and the runtime

becomes t
p · T .

Claim 9. Given a graph G and a vertex v, we can determine if there exists a path Pk starting from v

with high probability in O(k! ·m) time.

Proof.

Algorithm 10.

1. Randomly assign a linear ordering to the vertices of the graph G.

2. Ensure that the specified vertex v is the first vertex in this ordering.

3. Direct each edge (u,w) in the original graph G from u to w if u appears before w in the assigned

ordering, or from w to u if w appears before u.

4. The resulting directed graph is acyclic (DAG)3

Observe that we can determine if there exists a simple path of length k in the DAG starting from v

in O(m):

Dynamic Programming Approach:

1. Initialize D(v) = 0 and D(u) = −∞ for all other vertices u ̸= v.

2. Process the vertices of the DAG in topological order.

3. For each vertex u, we computeD(u), the length of the longest simple path ending at u that originates

from v.

4. The value of D(u) is given by:

D(u) = 1 + max
{w|(w,u)∈E and D(w) ̸=−∞}

{D(w)}

where D(w) = −∞ if there is no path from v to w.

3The constructed ordering is a topological sort.
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If maxu∈V {D(u)} ≥ k, then a simple path of length k starting from v exists.

Runs in O(m) time.

A specific path Pk from v is found if its vertices are ordered increasingly by the topological sort, which

occurs with probability 1
k! . Repeating the algorithm 100 · k! times yields a failure probability of at most(

1− 1
k!

)100·k!
< e−100.

Observation 11. Within the same time complexity, we could have checked for the existence of any path

Pk originating from v, not just a specific one. To achieve this, we can augment the graph by adding a

new vertex s and directed edges from s to every vertex in the original graph. Subsequently, searching for

a Pk+1 originating from s in this augmented graph is equivalent to searching for a Pk starting from v in

the original graph.

Question 12. What if we wanted to determine, for every vertex u ̸= v in the graph, if there exists a path

of length at least k from v to u?

Explanation: If we repeat the algorithm O(log n · k!) times, then the probability of failing to detect

a path of length at least k from v to a specific vertex u is at most 1
1000n . Consequently, the probability of

making an error for at least one vertex u ̸= v (i.e., failing to detect a path that exists) is bounded above

by n · 1
1000n = 1

1000 using the union bound.

4.1 Problem: Single-source, exact-length paths

Question 13. Can we determine, for every vertex u, whether there exists a simple path of length exactly

k from v to u?

Approach: Utilizing the same dynamic programming approach. For each vertex u, we maintain a

boolean array Du of size k + 1, where Du[i] is true if and only if there exists a simple path of length i

from v to u.

4.2 Cycling back to cycles

Claim 14. A Ck in a graph can be found in O(k! · k · n ·m) time.

Proof.

Algorithm 15.

1. For each vertex v in the graph, we perform the following:

(a) Run the randomized algorithm, with v as the source vertex.

(b) For each neighbor u of v in the original graph G, check if there is a path of length k − 1 from

v to u in the directed acyclic graph constructed by the algorithm.

(c) If such a neighbor u is found, then the edge between u and v in G, combined with the path of

length k − 1 from v to u, forms a cycle of length k.

Since the randomized algorithm from v takes O(k! · m) time and we iterate through at most n

starting vertices v, and for each v we check its neighbors (at most n), the total time complexity is

O(n · (k! ·m+ n)).

Claim 16. We can find a Pk or a Ck in a graph within a time complexity of O(k! · log k · nω).
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Proof. After assigning random vertex ordering (and therefore - random edge directions) the graph is

guaranteed to be free of non-simple paths. Consequently, if we compute the (k − 1)th power of the

adjacency matrix A of this DAG, the entry Ak−1
ij will be non-zero if and only if there exists a simple

path of length k − 1 from vertex i to vertex j in the directed graph. This computation of Ak−1 can be

performed in O(log k · nω) time.

4.3 Improving the computational complexity factor of k

Remark 17. The dependency of the previous claims and conclusions on k! makes it impractical for large

values of k. Therefore, a natural question arises: What is the greatest length of a simple cycle in a graph

that we know how to compute in polynomial time -without a factorial dependence on k?

5 Color-Coding Method For Finding Pk, Ck

[Alon, Yuster, and Zwick (1995)]

The goal is improve upon the k! factor in the time complexity, and aim for a dependence closer to 2O(k)

(i.e., the logarithm of the factor is linear in k). The Color-Coding method achieves this by replacing the

random edge orientation technique with a random coloring of the vertices.

Instead of directing edges, we randomly assign one of k colors to each vertex in the graph. We will

then demonstrate that it is computationally ”easy” to detect ”colorful” paths (or cycles), where each

color appears at most once along the path (or cycle).

1. Must be simple - like before.

2. What is the probability that a specific Pk in the graph is colorful?

A Pk has k vertices. For it to be colorful, all k vertices must have distinct colors.

• There are k! ways to assign k distinct colors to the k vertices of the path.

• There are kk total ways to color the k vertices of the path using k colors (each vertex can get any

of the k colors).

Therefore, the probability that a specific Pk is colorful is:

k!

kk

Using Stirling’s approximation (k! ≈
√
2πk ·

(
k
e

)k
), we get:

k!

kk
≈

√
2πk ·

(
k
e

)k
kk

=

√
2πk

ek

Claim 18. Given a graph with vertices colored using k colors and a starting vertex v, we can determine,

for every vertex u, the set of lengths of all colorful paths starting at v and ending at u, with length at

most k, in O(2O(k)mm) time.
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Proof. We proceed by dynamic programming on the length of the path. Let C(i, u) be the set of color

sets of colorful paths of length i that start at v and end at u.

For i = 1, for each neighbor u of v, C(1, u) = {{c(v), c(u)}} if c(v) ̸= c(u), and C(1, u) = ∅ otherwise.

For all other vertices w, C(1, w) = ∅.
For i > 1, we compute C(i, u) as follows:

C(i, u) =
⋃

(w,u)∈E

{S ∪ {c(u)} | S ∈ C(i− 1, w) and c(u) /∈ S}

We iterate through path lengths i from 1 to k. In each iteration, we examine all edges in the graph.

For each edge (w, u), we iterate through the color sets in C(i − 1, w) and update C(i, u) if adding the

color of u maintains the colorful property.

Note: This is not a standard Breadth-First Search (BFS) because a vertex can be reached by colorful

paths of the same length but with different sets of colors, requiring us to track these sets.

Finding Ck using Color-Coding: Similar to finding Pk, we can find a colorful Ck in O(2O(k)mn)

time. The 2O(k) factor stems from the fact that the DP state for a path of length up to k might involve

tracking a subset of the k colors (for example, with a k-length boolean vector).

Figure 1: Example snapshot of the memory state of a Color-Coding procedure starting from v

Question 19. Can we achieve a runtime complexity of O(2O(k) · nω)?

Algorithm 20. For each color i ∈ {1, . . . , k}, define a matrix Ai which is the adjacency matrix of the

graph, modified as follows:

• Set Ai[u, v] = 0 if the color of v, c(v) ̸= i.

• Set Ai[u, v] = 0 if the color of u, c(u) = i.
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Also, define a matrix Ri such that for each color i ∈ {1, . . . , k}, let Ri be an n×n diagonal matrix defined

as:

Ri[u, v] =

{
1 if u = v and c(u) = i

0 otherwise

This definition ensures that when we multiply Ri by another matrix M , the resulting matrix (Ri ·M)

has rows corresponding to vertices of color i as they are in M , and all other rows are zero. That is,

(Ri ·M)[u, v] = M [u, v] if c(u) = i, and 0 otherwise.

Then, the number of paths from vertex i to vertex j that pass through colors 1, . . . , k in that specific

order is given by: ∑
σ∈Sk

(Rσ(1) ·Aσ(2) ·Aσ(3) · · ·Aσ(k)) (3)

where Sk is the set of all permutations of {1, . . . , k}.

Observation 21. This approach is still problematic because it still has a k! factor due to the summation

over all k! permutations σ ∈ Sk.

We can also express this sum as:

k∑
i=1

Ri

 ∑
σ∈S[k]\{i}

Aσ(1) ·Aσ(2) · · ·Aσ(k−1)

 (4)

The equality arises from considering all possible starting colors for the path. The left-hand side sums

over all k! permutations of the k colors. The right-hand side achieves the same by:

1. Choosing the first color i (using
∑k

i=1Ri).

2. Summing over all possible orderings of the remaining k − 1 colors in the subsequent A matrix

products (using
∑

σ∈S[k]\{i}
Aσ(1) · · ·Aσ(k−1)).

Each term in the left-hand side corresponds to a unique combination of a starting color and an ordering

of the remaining colors, which is accounted for in the right-hand side.

Claim 22. Given a set of k − 1 matrices A1, . . . , Ak−1, we can compute the sum:

∑
σ∈Sk−1

k−1∏
i=1

Aσ(i)

in O(2k−1 · nω) time.

Proof. Dynamic programming: Let D(S) be the sum of the products of matrices Ai for all permutations

of the indices in the subset S ⊆ [k − 1].

Base Case: For any subset S of size 1, say S = {i}, D(S) = Ai.

General Case: For a subset S with |S| > 1, we can express D(S) by considering each element j ∈ S

as the first index in the permutation. Then, the remaining product is over the subset S \ {j}. Thus, we
get:

D(S) =
∑
j∈S

Aj ·D(S \ {j})
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The number of subsets of [k − 1] is 2k−1. For each subset, we iterate through at most k − 1 elements to

compute the sum, and each matrix multiplication takes O(nω) time. Therefore, the total time complexity

is O(2k−1 · k · nω) = O(2k · nω).

5.1 Results, so far:

• Finding a cycle of length 3 (C3): Can be done in time min(nω,m
2ω
1+ω ).

• Finding a cycle of length 4 (C4): Can be done in time min(n2,m4/3). Note that if ω = 2

then m
2ω
1+ω = m

4
3 .

• Theorem: For any integer k ≥ 2, a cycle of length 2k (C2k) can be found in a graph in

O(2O(k) · n2) time.

• Our latest result: A cycle of length 2k + 1 (C2k+1) can be found in O(2O(k) · nω) time.

6 Θ - Graphs

Definition 23. A Θ-graph (Clarkson, 1987)4 is a graph consisting of two cycles that share exactly one

edge.

Definition 24. We say a Θ graph has girth greater than t if both of its constituent cycles have length

strictly greater than t.

Theorem 25. If a graph G satisfies m ≥ 2t · n, then G contains a Theta graph with girth greater than

t. Moreover, such a Θ graph can be found in O(m) time.

Proof. We can find a subgraph of G with minimum degree at least 2t by iteratively deleting vertices with

degree less than 2t. This process takes O(m) time.

Find a maximal simple path P in this subgraph. Let the endpoints of P be v1 and vk. This can be

done in O(m) time.

Figure 2: Construction of P

Consider the neighbors of v1, denoted by N(v1). Since P is a maximal simple path, all vertices in

N(v1) must lie on the path P . Let the indices of these neighbors along the path be i1, i2, . . . , i2t, where

4The K. Clarkson in question is not to be confused with Kelly Clarkson, born in 1982, who did not publish these
conclusions when she was 5.
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1 ≤ i1 < i2 < . . . < i2t ≤ k. Since the path is maximal, and m ≥ 2t · n, the vertex v1 has at least 2t

neighbors on the path P . Let these neighbors be vi1 , vi2 , . . . , vi2t in order of their indices on P .

Figure 3: Construction of the maximal subgraph

Consider the edges (v1, vij ) for j = 1, . . . , 2t. These edges, along with the segments of the path P

from v1 to vij , form cycles.

Consider the neighbors vit and vi2t . The edges (v1, vit) and (v1, vi2t), together with the path segment

of P from v1 to vit and v1 to vi2t respectively, form two cycles.

The lengths of these cycles are at least t since the indices are it and i2t and the path is simple and

maximal.

Definition 26. Given a graph G and a coloring of its vertices, we say that the coloring is t-periodic if,

for every path Pt in G, the two endpoints of the path have the same color.

Examples:

1. Straight Line

2. 2-Periodic

Claim 27. Given a cycle Cl and a coloring of its vertices, the smallest t∗ such that the coloring is

t∗-periodic must divide l. (In other words, every cycle Cl is l-periodic.)

Proof. Let t∗ < l be the smallest period of the coloring. We can write l as l = ⌊ l
t∗ ⌋ · t

∗ + (l mod t∗),

where 0 ≤ (l mod t∗) < t∗.

If l mod t∗ = 0, then we are done, as t∗ divides l.

Assume for contradiction that l mod t∗ ≥ 1.

Consider two vertices in Cl that are a distance of l mod t∗ apart. We can also reach the second vertex

from the first vertex by traversing the cycle in the other direction. This traversal consists of ⌊ l
t∗ ⌋ paths

of length t∗. Since the coloring is t∗-periodic, all vertices along these paths have the same color as the

starting vertex. Therefore, the two vertices at a distance of l mod t∗ apart must have the same color.
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This implies that the coloring is also (l mod t∗)-periodic. However, l mod t∗ < t∗, which contradicts

the assumption that t∗ is the smallest period.

Therefore, l mod t∗ = 0, and t∗ divides l.

Claim 28. Consider a Θ-graph with girth greater than t, having a cycle of length l. Then, the smallest

period t∗ of a coloring for this Θ-graph is the same for all cycles in the graph.

Figure 4: The entire graph is t-periodic

Proof. We can find paths of length r · t∗ (for any integer r) that connect pairs of vertices at a distance

of t∗ on any other cycle of the Θ-graph. This would imply that the coloring has the same period for any

cycle in the Θ-graph.

Conclusion 29. Suppose we have a Θ-graph with girth greater than t. Then its smallest period t∗ is at

least 2.

Proof. We noted that any period t∗ ≥ 1 of one of the cycles is also a period of all cycles in the entire

Θ-graph, and that the smallest period of any cycle must divide its length.

Let the lengths of the two cycles be l1 + 1 and l2 + 1, where the shared edge contributes 1 to each

cycle. The length of the entire Θ-graph is l1 + l2.

Therefore,

t∗|l1 + 1, t∗|l2 + 1, andt∗|l1 + l2 (5)

⇒ t∗|(l1 + 1) + (l2 + 1)− (l1 + l2) = 2. (6)

Since the girth is greater than t, the lengths of the cycles are at least t+ 1. Since the period divides

the length of the cycle, and t∗ is at least 1, if t∗ = 1, then it will divide the cycle length, which is greater

than t.

Therefore, t∗ divides 2, and t∗ must be at least 2.
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