
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) July 23, 2025

Final Exam (A)

Instructor:Or Zamir

Instructions (Please Read Carefully)

• This exam consists of four questions. The number of points for each question and sub-question is

indicated alongside it. The total available points add up to 105, but the final score will be capped

at 100.

• You may use theorems or lemmas that were proved in class, provided you cite them exactly as stated.

Any modifications of these results—or use of results from homework—must be fully re-proven.

• Write your answers clearly and in an organized manner in the provided exam booklet. Clearly label

each answer with the corresponding question number, and indicate whether each page is a draft or

a final answer.

• Unless explicitly stated otherwise, all graphs are assumed to be undirected and unweighted, and all

notation follows that used in class.

• Unless explicitly stated otherwise, algorithms with an expected run-time or that succeed with high

probability are sufficient.

Exam Questions

Figure 1: The kite graph K.
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1. (40 points) Denote by K a graph on five vertices we would call a kite, this is a 4-cycle C4 with an

additional node connected to exactly one of the cycle vertices, see Figure 1.

(a) (15 points) Show that given a graph G with n vertices, we can check if it contains a kite K as

a subgraph in Õ(n2) time.

(b) (10 points) Assume that there is no algorithm for C4-detection in n-vertex graphs running

in n2−ε time for any constant ε > 0. Prove that no algorithm can detect a kite in n-vertex

graphs in time n2−ε for any constant ε > 0.

(c) (15 points) What is the extremal number of K? Give tight, up to constant factors, upper and

lower bounds for ex(K, n).

2. (40 points)

(a) (15 points) Let G be a connected graph and φ a parameter. Assume that for any subset

of edges D ⊆ E(G) if we denote by C1, . . . , Cr the connected components of G − D for

which vol(Ci) ≤ 1
2vol(V (G)), it holds that

∑r
i=1 vol(Ci) ≤ |D|/φ. Prove that the conductance

of G is at least Ω(φ).

(b) (15 points) Let G be a graph without isolated vertices, prove that λ2(NG) > 0 if and only if G

is connected. Note that we proved the same statement in class for the Laplacian LG rather

than for the normalized Laplacian NG := D
−1/2
G LGD

−1/2
G = I −D

−1/2
G AGD

−1/2
G .

(c) (10 points) Strengthen the previous statement and show that for every connected G with n

vertices we have λ2(NG) ≥ Ω(1/n4). (Note: this is not necessarily a tight bound).

3. (15 points) Let G be a weighted graph. A MinCut query is an algorithm that, given a subset

S ⊆ V , returns the minimum-weight edge with one endpoint in S and one in V \S, if such an edge

exists. You are given the vertex set of G, but have no other access to the graph (in particular, you

cannot check whether an edge exists, or query degrees or weights). Your access is only through

MinCut queries. Design an algorithm that computes a minimum spanning tree of G using as few

MinCut queries as possible. Provide a full analysis, but there is no need to prove your solution is

optimal.

4. (10 points) Let G be graph with n vertices. Give a O⋆(2n) time algorithm that finds the smallest

number of cliques (of any sizes) needed to cover all vertices of G (this is a collection of cliques in G

such that the union of their vertex sets is V ).
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Solution

Question 1.

a) We observe that every C4 in which one of the vertices has degree at least 4 is contained in a K —

that is because the high-degree vertex has at least one neighbor which is not part of the C4 itself. A

slight modification of the O(n2) algorithm we used to find a C4 in class can also find a C4 with a vertex

of degree at least 4 if one exists in the graph:

• Go over all vertices and for each one create an additional neighbor list N≥4(v) ⊆ N(v) that contains

all of v’s neighbors for which the degree is at least 4.

• Initiate a dictionary or set D maintaining pairs of vertices.

• Iterate over all vertices v in the graph:

– Go over all pairs u,w of v’s neighbors such that u ∈ N≥4(v) and w ∈ N(v) (make sure to go

over each pair only once).

– For each such pair, check if it is already in D. If so, return “Yes”, otherwise, insert it to D.

• Return “No” unless we returned “Yes” beforehand.

As in class, this algorithm maintains a set of the endpoints of distinct 2-paths, if we have a collision

we found a C4, and we may add at most n2/2 different endpoints before we find a collision. This time,

we only consider endpoints such that at least one of them is of degree at least 4 - thus we would find

a C4 if and only if at least one of its endpoints is such a vertex.

Next, we observe that the only copies of K that the above algorithm may miss are those where all C4

vertices are of degree at most 3. To check whether such a copy exists we remove all vertices of vertices

of degree at least 4 from the graph and then naively write down all C4s in the resulting graph which is

of maximum degree 3. This can be done by going over the vertices and for each one writing down its

distance 2 neighborhood (which is of size O(1)). Then, for each of these O(n) C4s we check whether or

not they are in a K (that is, one of their vertices has a neighbor outside of the cycle itself).
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b) We reduce the problem of finding a C4 in a graph to the problem of finding a K in a graph. Given

an input graph G we add an auxiliary vertex v′ and connect it (only) to v for each vertex v. Call the

resulting graph G′.

We observe that G′ contains a K if and only if G contains a C4: If G contains a C4 and v is an

arbitrary vertex within it, then the same C4 in addition to v′ in G′ is a K. On the other hand, if G′

contains a K then it also contains a C4 ⊆ K and every vertex within this four-cycle is of degree ≥ 2 and

thus is not an auxiliary vertex — in particular, that C4 also exists in G.

As the number of vertices in G′ is 2n, an algorithm finding a K in n2−ε time results in an algorithm

to find a C4 in (2n)2−ε time. This is a contradiction to our assumption.

c) As stated before, every K contains a C4 and thus a C4-free graph is also K-free. This implies

that ex(K, n) ≥ ex(C4, n) = Ω(n3/2) where we proved the last inequality in class. On the other hand,

we will prove that this is tight as any graph containing at least 100n3/2 edges must also contain a K:

First, using a Lemma from class, we may find a subgraph with minimum degree at least 50n3/2. In that

subgraph, there must be a C4 due to the extremal number of C4s, but also every vertex is of degree at

least 4 and thus any C4 is also contained in a K.
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Question 2.

a) Let (S, V \S) be a cut in the graph and assume that vol(S) ≤ vol(V \S). Denote by D := E(S, V \S)

the set of edges that cross this cut. Denote by C1, . . . , Cr the connected components of G[S], these are

all distinct connected components of G−D and each of them has volume at most vol(S) ≤ 1
2vol(V ). In

particular, from our assumption,

vol(S) =
r∑

i=r

vol(Cr) ≤ |D|/φ = |E(S, V \ S)|/φ.

We conclude that |E(S, V \S)|/vol(S) ≥ φ, and as this is true for every cut in the graph its conductance

is at least φ.

b) If G is disconnected then denote by S ⊊ V a connected component of it. As we have seen in class

(or by a simple calculation), both x := 1S and y := 1V are in the kernel of LG. Observe that x, y are

linearly independent as all of their coefficients are non-negative but x has zeroes where y does not. In

particular, there exists a scalar α such that (x − αy) ⊥
−→
d : simply pick α :=< x,

−→
d > / < y,

−→
d >

(note that the denominator is not zero). Thus we found a non-zero vector orthogonal to
−→
d such that the

quotient ztLGz
ztDGz = 0. As we have proved in class, λ2(NG) is the minimum of this quotient over all such

vectors and thus it is zero. We can prove the other direction together with Clause (c) as it is a stronger

(quantitative) version of it.

c) Assume that G is connected. Let (S, V \S) be any cut in the graph with vol(S) ≤ vol(V \S). As the

graph is connected, |E(S, V \ S)| ≥ 1, and as an undirected simple graph vol(S) ≤ 1
2vol(V ) = m ≤ n2

2 .

We conclude that
|E(S, V \ S)|

vol(S)
≥ 2

n2
.

In particular, the conductance of G is at least φ ≥ 2/n2. Thus, by Cheeger’s inequality as proven in class

we have

λ2(NG) ≥
1

2
φ(G)2 ≥ 1

2

(
2

n2

)2

=
2

n4
.
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Question 3.

We show that Prim’s algorithm only uses MinCut queries. Consider the following algorithm:

• Initialize T ← ∅ an empty tree and S ← {v} for an arbitrary vertex v ∈ V .

• For (n− 1) steps do the following:

– Ask a MinCut query for S, denote the answer by (u,w) with u ∈ S,w ̸∈ S.

– Update T ← T ∪ {(u,w)} and S ← S ∪ {w}.

• Return T .

We can prove the resulting T is an MST by induction: For a graph of size 1 the statement is trivial.

For a larger graph, consider the first edge e we add to T , it is the minimal in some cut (as is every edge

returned by a MinCut query) and is thus in some MST as shown in class, the rest of the algorithm is

equivalent to running the same algorithm on the graph G with the edge e contracted and its contracted

vertex being the initial vertex in S. As seen in class, a contracted MST edge in addition to the MST of

the contracted graph is an MST of the entire graph.

The algorithm makes only (n − 1) MinCut queries, which is also optimal (for example as this is the

number of edges in any possible spanning tree and each query returns only a single edge).

Question 4.

A subset of the vertices spans a clique if and only if the same subset of vertices is an independent

set in the complementary graph Gc (in which we flip the existence or non-existence of every edge). In

particular, the minmum number of cliques needed to cover G equals the minimum number of independent

sets needed to cover Gc which is simply its chromatic number (Gc). We can thus use the algorithm from

class to compute this chromatic number.
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